本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6641 | 2025-03-09 |
A review of AI-based radiogenomics in neurodegenerative disease
2025, Frontiers in big data
IF:2.4Q2
DOI:10.3389/fdata.2025.1515341
PMID:40052173
|
review | 本文综述了基于人工智能的放射基因组学在神经退行性疾病中的应用 | 结合放射组学和基因组学,利用人工智能技术提高神经退行性疾病的诊断准确性和及时性 | NA | 探讨人工智能在神经退行性疾病放射基因组学中的应用 | 神经退行性疾病 | digital pathology | geriatric disease | radiomics, genomics | machine learning, deep learning | imaging, genomic data | NA |
6642 | 2025-03-09 |
Enhancing Whole Slide Image Classification with Discriminative and Contrastive Learning
2024-Oct, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
DOI:10.1007/978-3-031-72083-3_10
PMID:40046787
|
研究论文 | 本研究通过结合判别式和对比学习技术,提升了全切片图像(WSI)分类的准确性和鲁棒性 | 与现有主要依赖基于WSI级别标签分配伪标签的对比学习方法不同,本研究直接在WSI级别构建正负样本,从而更有效地学习信息丰富的图像特征 | NA | 提高全切片图像分类的准确性和鲁棒性 | 全切片图像(WSI) | 数字病理学 | NA | 对比学习 | 深度学习 | 图像 | 两个数据集 |
6643 | 2025-03-09 |
Accurate fully automated assessment of left ventricle, left atrium, and left atrial appendage function from computed tomography using deep learning
2024-Oct, European heart journal. Imaging methods and practice
DOI:10.1093/ehjimp/qyaf011
PMID:40051867
|
研究论文 | 本研究开发了一种全自动深度学习方法,用于从计算机断层扫描(CT)中计算心脏功能 | 首次比较了nnU-Net、3D TransUNet和UNETR在心脏功能参数分割和计算中的表现,发现nnU-Net在多个指标上优于其他模型 | 样本量较小(39名患者),且仅评估了左侧心脏功能 | 开发一种全自动深度学习方法,用于从CT中计算心脏功能参数 | 左心室(LV)、左心房(LA)和左心耳(LAA) | 计算机视觉 | 心血管疾病 | CT | nnU-Net, 3D TransUNet, UNETR | 图像 | 39名患者的时间分辨CT数据集 |
6644 | 2025-03-09 |
Artificial intelligence applied to magnetic resonance imaging reliably detects the presence, but not the location, of meniscus tears: a systematic review and meta-analysis
2024-Sep, European radiology
IF:4.7Q1
DOI:10.1007/s00330-024-10625-7
PMID:38386028
|
系统综述与荟萃分析 | 本文通过系统综述和荟萃分析,评估了卷积神经网络(CNN)在诊断半月板撕裂中的准确性,并分析了这些CNN算法的决策过程 | 首次系统地比较了AI模型在诊断半月板撕裂中的表现,特别是在识别撕裂存在与定位撕裂位置方面的差异 | 研究存在显著的异质性(I2=79%),且AI模型在定位撕裂位置方面的表现不如识别撕裂存在 | 评估AI模型在诊断半月板撕裂中的准确性,并分析其决策过程 | 半月板撕裂的诊断 | 医学影像分析 | 半月板撕裂 | 卷积神经网络(CNN) | CNN | 磁共振成像(MRI)图像 | 13,467名患者和57,551张图像 |
6645 | 2025-03-09 |
Evaluation of preoperative difficult airway prediction methods for adult patients without obvious airway abnormalities: a systematic review and meta-analysis
2024-07-17, BMC anesthesiology
IF:2.3Q2
DOI:10.1186/s12871-024-02627-1
PMID:39020308
|
系统综述和荟萃分析 | 本文通过系统综述和荟萃分析,评估了成人患者无显著气道异常时术前困难气道预测方法的有效性 | 本文首次系统性地评估了多种术前困难气道预测方法,并提出了结合多种方法的个性化预测策略 | 研究存在显著的异质性,可能受到样本量和研究设计等因素的影响 | 评估和比较不同术前困难气道预测方法的有效性,以辅助临床决策 | 成人患者,无显著气道异常,接受各种类型手术 | 临床医学 | NA | 系统综述和荟萃分析 | NA | 文献数据 | 686,089名患者 |
6646 | 2025-03-09 |
The human hypothalamus coordinates switching between different survival actions
2024-Jun, PLoS biology
IF:7.8Q1
DOI:10.1371/journal.pbio.3002624
PMID:38941452
|
研究论文 | 本研究探讨了人类下丘脑在生存行为切换中的作用,通过虚拟捕食者和猎物的实验范式,结合深度学习分割和优化的成像序列,揭示了人类下丘脑在生存行为切换中的关键角色 | 首次识别了人类下丘脑在生存行为切换中的作用,并揭示了其在行为切换后动作组织中的角色 | 研究依赖于虚拟环境中的行为模拟,可能无法完全反映真实世界中的生存行为 | 探讨人类下丘脑在生存行为切换中的作用 | 人类下丘脑及其在生存行为切换中的功能 | 神经科学 | NA | 深度学习分割、优化的成像序列、多体素模式分析(MVPA)、多体素连接分析、基于模型的fMRI分析 | 计算模型 | fMRI数据 | 两次实验中的志愿者 |
6647 | 2025-03-09 |
Multinational External Validation of Autonomous Retinopathy of Prematurity Screening
2024-Apr-01, JAMA ophthalmology
IF:7.8Q1
DOI:10.1001/jamaophthalmol.2024.0045
PMID:38451496
|
研究论文 | 本研究评估了基于自主人工智能的早产儿视网膜病变(ROP)筛查在检测中重度ROP和1型ROP方面的表现 | 使用深度学习创建的图像处理管道,通过远程医疗自主识别中重度ROP和1型ROP | 研究依赖于外部数据集,可能存在数据偏差 | 评估自主AI筛查ROP的有效性 | 早产儿视网膜病变(ROP) | 数字病理学 | 早产儿视网膜病变 | 深度学习 | AI算法 | 图像 | SUNDROP数据集:1545名婴儿的6245次检查;AECS数据集:2699名婴儿的5635次检查 |
6648 | 2025-03-09 |
Adaptive Tensor-Based Feature Extraction for Pupil Segmentation in Cataract Surgery
2024-03, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2023.3345837
PMID:38127596
|
研究论文 | 本文提出了一种名为自适应小波张量特征提取(AWTFE)的新方法,用于提高深度学习驱动的瞳孔识别系统的准确性 | 提出了一种新的自适应小波张量特征提取方法,通过构建三阶张量来表示空间信息、颜色通道和小波子带之间的相关性,并利用高阶奇异值分解自适应地消除冗余信息,从而提高瞳孔识别的准确性 | NA | 提高白内障手术视频中瞳孔分割的准确性,以帮助外科医生在手术并发症发生前检测瞳孔不稳定的风险因素 | 白内障手术视频中的瞳孔区域 | 计算机视觉 | 白内障 | 自适应小波张量特征提取(AWTFE) | 深度学习分割模型 | 图像 | 5,700张来自190例白内障手术的标注术中图像(BigCat数据集)和一个公开的CaDIS数据集 |
6649 | 2025-03-09 |
Synthesizing 3D Multi-Contrast Brain Tumor MRIs Using Tumor Mask Conditioning
2024-Feb, Proceedings of SPIE--the International Society for Optical Engineering
DOI:10.1117/12.3009331
PMID:38715792
|
研究论文 | 本文提出了一种基于肿瘤掩码条件的3D多对比脑肿瘤MRI合成方法,以解决医学图像数据稀缺和不平衡的问题 | 将2D潜在扩散模型调整为生成3D多对比脑肿瘤MRI数据,并引入肿瘤掩码作为条件,生成高质量且多样化的样本 | 未提及模型在临床环境中的实际应用效果或生成样本的临床验证 | 解决脑肿瘤MRI数据稀缺问题,提升深度学习模型的训练数据可用性 | 脑肿瘤MRI数据 | 计算机视觉 | 脑肿瘤 | 3D潜在扩散模型 | 3D自编码器、条件3D扩散概率模型(DPM) | 3D多对比MRI图像 | 两个数据集:TCGA公共数据集和UTSW内部数据集 |
6650 | 2025-03-09 |
MRI-Based Deep Learning Method for Classification of IDH Mutation Status
2023-Sep-05, Bioengineering (Basel, Switzerland)
DOI:10.3390/bioengineering10091045
PMID:37760146
|
研究论文 | 本研究旨在开发基于T2加权MRI图像的深度学习网络,用于非侵入性IDH突变状态分类,并与多对比网络进行比较 | 开发了仅使用T2加权图像的深度学习网络(T2-net)和多对比网络(MC-net),并在超过1100个样本上进行了测试,这是迄今为止最大的基于图像的IDH分类研究 | NA | 开发用于IDH突变状态分类的深度学习算法 | 胶质瘤患者的MRI图像和基因组数据 | 计算机视觉 | 胶质瘤 | MRI | 深度学习网络(T2-net和MC-net) | 图像 | 超过1100个样本,包括来自多个数据库的病例 |
6651 | 2025-03-09 |
Deep learning identifies robust gender differences in functional brain organization and their dissociable links to clinical symptoms in autism
2022-Apr, The British journal of psychiatry : the journal of mental science
DOI:10.1192/bjp.2022.13
PMID:35164888
|
研究论文 | 本研究利用深度学习技术识别自闭症谱系障碍(ASD)中男女功能脑组织的显著差异,并探讨这些差异与临床症状的关联 | 开发了一种新的时空深度神经网络(stDNN),用于分析功能磁共振成像数据,成功区分ASD患者中的性别差异,并发现这些差异与临床症状的特定关联 | 研究主要依赖于神经影像数据,可能忽略了其他潜在的生物或环境因素对性别差异的影响 | 识别ASD中男女功能脑组织的差异,并预测症状严重程度 | 自闭症谱系障碍(ASD)患者 | 机器学习和神经影像分析 | 自闭症谱系障碍 | 功能磁共振成像(fMRI)和深度学习 | 时空深度神经网络(stDNN) | 神经影像数据 | 773名ASD患者 |
6652 | 2025-03-08 |
Kellgren-Lawrence grading of knee osteoarthritis using deep learning: Diagnostic performance with external dataset and comparison with four readers
2025-Jun, Osteoarthritis and cartilage open
DOI:10.1016/j.ocarto.2025.100580
PMID:40046240
|
研究论文 | 本研究评估了深度学习模型在外部数据集上对膝关节骨关节炎的Kellgren-Lawrence (KL)分级诊断性能,并与四位读者进行了比较 | 使用深度学习模型在外部数据集上评估膝关节骨关节炎的KL分级,并与多位人类读者进行比较,展示了深度学习在医学影像诊断中的潜力 | 研究样本量较小(208例膝关节X光片),且仅使用了单一外部数据集进行验证 | 评估深度学习模型在膝关节骨关节炎KL分级中的诊断性能 | 膝关节骨关节炎的X光片 | 计算机视觉 | 骨关节炎 | 深度学习 | 深度学习模型 | 图像 | 208例膝关节X光片 |
6653 | 2025-03-08 |
Optimizing Catheter Verification: An Understandable AI Model for Efficient Assessment of Central Venous Catheter Placement in Chest Radiography
2025-Apr-01, Investigative radiology
IF:7.0Q1
DOI:10.1097/RLI.0000000000001126
PMID:39724590
|
研究论文 | 本研究旨在通过分割支持材料和解剖结构来提高中心静脉导管(CVC)错位检测的精确性和可理解性 | 结合分类网络和分割网络的深度学习模型,提高了CVC错位检测的准确性和临床可解释性 | 研究中使用的数据集可能存在标签不准确的问题,且模型的泛化能力需要进一步验证 | 提高中心静脉导管(CVC)错位检测的准确性和临床可解释性 | 中心静脉导管(CVC)在胸部X光片中的位置 | 医学影像分析 | NA | 深度学习 | 分类网络、分割网络及其组合 | 胸部X光片 | 1006张带注释的仰卧胸部X光片 |
6654 | 2025-03-08 |
Assessment of Emphysema on X-ray Equivalent Dose Photon-Counting Detector CT: Evaluation of Visual Scoring and Automated Quantification Algorithms
2025-Apr-01, Investigative radiology
IF:7.0Q1
DOI:10.1097/RLI.0000000000001128
PMID:39729642
|
研究论文 | 本研究评估了在X射线等效剂量光子计数探测器CT上使用视觉评分、低衰减体积(LAV)和深度学习方法估计肺气肿范围的可行性和效果,旨在探索未来剂量减少的潜力 | 首次在X射线等效剂量光子计数探测器CT上评估了视觉评分和自动化量化算法在肺气肿估计中的应用,并探索了剂量减少的潜力 | 深度学习和LAV算法在X射线剂量扫描中高估了肺气肿范围 | 评估在X射线等效剂量光子计数探测器CT上估计肺气肿范围的可行性和效果 | 101名前瞻性入组的患者 | 数字病理学 | 慢性阻塞性肺疾病 | CT扫描、深度学习方法 | 深度学习模型 | 图像 | 101名患者 |
6655 | 2025-03-08 |
FusionNet: Dual input feature fusion network with ensemble based filter feature selection for enhanced brain tumor classification
2025-Apr-01, Brain research
IF:2.7Q3
DOI:10.1016/j.brainres.2025.149507
PMID:39970997
|
研究论文 | 本文提出了一种名为FusionNet的新方法,利用正常和分割的MRI图像来提高脑肿瘤分类的准确性 | FusionNet结合了正常和分割的MRI图像,使用基于注意力机制和集成特征选择的方法来优先考虑相关特征,从而提高分类性能 | NA | 提高脑肿瘤分类的准确性 | 脑肿瘤 | 计算机视觉 | 脑肿瘤 | 深度学习 | FusionNet | MRI图像 | 多个数据集(Figshare, Kaggle, Sartaj, 组合数据集) |
6656 | 2025-03-08 |
Lightweight sparse optoacoustic image reconstruction via an attention-driven multi-scale wavelet network
2025-Apr, Photoacoustics
IF:7.1Q1
DOI:10.1016/j.pacs.2025.100695
PMID:40046019
|
研究论文 | 本文提出了一种轻量级的稀疏光声图像重建网络AD-WaveNet,通过结合离散二维小波变换和自适应注意力机制,提高了稀疏采样下的图像重建质量并降低了计算复杂度 | AD-WaveNet网络创新性地将离散二维小波变换与自适应注意力机制相结合,利用小波变换的多尺度分解特性,强调不同尺度下的关键特征,从而在降低计算复杂度和参数量的同时保持最佳重建质量 | NA | 提高稀疏采样下光声断层扫描(PAT)图像的重建质量,并降低计算复杂度 | 光声断层扫描(PAT)图像 | 计算机视觉 | NA | 离散二维小波变换(DWT) | AD-WaveNet | 图像 | NA |
6657 | 2025-03-08 |
Deep learning-based quantification of T2-FLAIR mismatch sign: extending IDH mutation prediction in adult-type diffuse lower-grade glioma
2025-Mar-07, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11475-7
PMID:40050456
|
研究论文 | 本研究探讨了基于深度学习的定量T2-FLAIR不匹配比率(qT2FM)在成人型弥漫性低级别胶质瘤(LGG)中预测IDH突变状态的价值 | 利用深度学习进行全自动肿瘤分割,首次提出qT2FM作为识别IDH突变状态和IDHmut-Noncodel亚型的有力预测指标 | 研究为回顾性设计,样本量相对有限,且未涉及其他类型胶质瘤的验证 | 评估qT2FM在成人型弥漫性LGG中预测IDH突变状态的有效性 | 218名成人型弥漫性LGG患者 | 数字病理学 | 脑胶质瘤 | 深度学习 | 深度学习分割模型 | 医学影像 | 218名患者(125名男性,平均年龄47岁±15) |
6658 | 2025-03-08 |
Automated deep learning-assisted early detection of radiation-induced temporal lobe injury on MRI: a multicenter retrospective analysis
2025-Mar-07, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11470-y
PMID:40050455
|
研究论文 | 本文评估了一种基于深度学习的自动化工具(RTLI-DM)在MRI上早期检测辐射诱导的颞叶损伤(RTLI)的效果 | 开发并验证了一种结合Unet++和修改版DenseNet-121网络的自动化RTLI检测模型,显著提高了放射科医生的诊断性能并减少了阅读时间 | 尽管RTLI-DM显著提高了诊断性能,但在临床应用中仍需进一步验证 | 评估自动化深度学习工具在早期检测辐射诱导颞叶损伤中的效果 | 396名RTLI患者和3181名非RTLI患者 | 数字病理学 | 颞叶损伤 | MRI | Unet++, DenseNet-121 | 图像 | 396名RTLI患者和3181名非RTLI患者,总计3577名患者 |
6659 | 2025-03-08 |
The value of radiomics and deep learning based on PET/CT in predicting perineural nerve invasion in rectal cancer
2025-Mar-07, Abdominal radiology (New York)
DOI:10.1007/s00261-025-04833-y
PMID:40053051
|
研究论文 | 本研究探讨了基于PET/CT的放射组学特征和深度学习特征在预测直肠癌神经周围浸润(PNI)中的价值 | 结合PET代谢参数、放射组学特征和深度学习特征构建了联合模型,用于预测直肠癌的神经周围浸润 | 样本量相对较小,且外部验证集仅来自两家医院 | 研究PET/CT的放射组学和深度学习特征在预测直肠癌神经周围浸润中的应用价值 | 直肠癌患者 | 数字病理 | 直肠癌 | PET/CT | 深度学习模型、放射组学模型、联合模型 | PET/CT图像 | 120例直肠癌患者(56例PNI阳性,64例PNI阴性),外加31例来自其他两家医院的患者作为外部验证集 |
6660 | 2025-03-08 |
Deep Learning-based Multi-class Classification for Neonatal Respiratory Diseases on Chest Radiographs in Neonatal Intensive Care Units
2025-Mar-06, Neonatology
IF:2.6Q1
DOI:10.1159/000545107
PMID:40049153
|
研究论文 | 本研究介绍了一种基于深度学习的自动算法,用于分类新生儿重症监护病房中的各种新生儿呼吸系统疾病和健康肺 | 使用大规模高质量多类标注的胸部X光图像数据集,结合非影像数据,开发了一种新的深度学习模型,用于新生儿呼吸系统疾病的自动分类 | 研究仅基于韩国10所大学医院的数据,可能限制了模型的普遍适用性 | 开发一种自动分类算法,以支持新生儿科医生对重症新生儿的及时准确决策 | 新生儿重症监护病房中的新生儿 | 计算机视觉 | 新生儿呼吸系统疾病 | 深度学习 | 修改后的ResNet50 | 胸部X光图像 | 训练集34,598张,验证集4,370张,测试集4,370张 |