本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
661 | 2025-05-15 |
Application of Hyperspectral Imaging and Machine Learning for Differential Diagnosis of Hashimoto's Thyroiditis and Papillary Thyroid Carcinoma
2025-May-13, Journal of biophotonics
IF:2.0Q3
DOI:10.1002/jbio.202500123
PMID:40364460
|
研究论文 | 本研究利用高光谱成像和深度学习模型区分桥本甲状腺炎和甲状腺乳头状癌的光谱特征 | 首次应用高光谱成像和自适应光谱特征选择网络模型来区分HT和PTC的光谱特征 | 未提及样本量的具体数目,且模型准确率为88.36%,仍有提升空间 | 区分桥本甲状腺炎和甲状腺乳头状癌的光谱特征,提高甲状腺疾病的诊断准确性 | 桥本甲状腺炎和甲状腺乳头状癌的样本 | 数字病理 | 甲状腺疾病 | 高光谱成像(HSI) | 自适应光谱特征选择网络模型 | 高光谱图像 | NA |
662 | 2025-05-15 |
Development of 3D Intelligent Quantitative Phase Microscope for Sickle Cells Screening
2025-May-13, Journal of biophotonics
IF:2.0Q3
DOI:10.1002/jbio.202400512
PMID:40364484
|
研究论文 | 本文介绍了一种用于镰状细胞病(SCD)自动筛查的智能显微镜系统 | 结合干涉法捕获高分辨率3D相位图像与基于UNET模型的深度学习技术,实现镰状细胞和健康细胞的语义分割 | 系统鲁棒性有待提高,需要进一步的临床验证 | 开发一种快速可靠的SCD诊断工具 | 镰状细胞和健康红细胞(RBCs) | 数字病理学 | 镰状细胞病 | 干涉法成像 | UNET, 梯度提升模型 | 3D相位图像 | NA |
663 | 2025-05-15 |
The Potential Role of AI- and Machine Learning Models in the Early Detection of Oral Cancer and Oral Potentially Malignant Disorders
2025-05-12, Studies in health technology and informatics
DOI:10.3233/SHTI250257
PMID:40357619
|
综述 | 本文评估了人工智能在口腔癌和口腔潜在恶性病变早期检测中的应用进展 | 探讨了AI和深度学习模型在提高口腔癌和OPMDs早期检测中的潜力,并分析了其诊断准确性、可及性和可负担性 | 模型的可解释性有限,存在伦理问题,需进一步解决以整合到临床实践中 | 评估AI在口腔癌和口腔潜在恶性病变早期检测中的应用 | 口腔癌和口腔潜在恶性病变(OPMDs) | 数字病理 | 口腔癌 | AI和机器学习技术 | 深度学习模型 | 非侵入性诊断数据 | 8项研究(2015-2024年发表) |
664 | 2025-05-15 |
A new diagnostic method and tool for cutaneous leishmaniasis based on artificial intelligence techniques
2025-May-12, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.110313
PMID:40359677
|
研究论文 | 开发了一种基于人工智能技术的皮肤利什曼病新型诊断方法和工具 | 利用YOLO 8深度学习模型在显微镜图像中检测利什曼原虫,准确率达97%,并开发了移动应用进行验证 | 研究数据仅来自阿尔及利亚巴斯德研究所M'sila分所,可能缺乏地域多样性 | 提高皮肤利什曼病的诊断准确性和效率 | 显微镜图像中的利什曼原虫 | 计算机视觉 | 皮肤利什曼病 | 深度学习 | YOLO 8 | 图像 | 阿尔及利亚巴斯德研究所M'sila分所收集的显微镜图像 |
665 | 2025-05-15 |
CausalMixNet: A mixed-attention framework for causal intervention in robust medical image diagnosis
2025-May-12, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2025.103581
PMID:40359724
|
research paper | 提出了一种名为CausalMixNet的创新方法,通过混合注意力机制探索医学图像与标签之间的因果关系,以提高诊断的准确性和泛化性能 | 采用query-mixed intra-attention和key&value-mixed inter-attention机制,结合非局部推理模块(NLRM)和key&value-mixed inter-attention(KVMIA)进行前门调整策略,以及patch-masked ranking模块(PMRM)和query-mixed intra-attention(QMIA)增强中介学习 | 未明确提及具体限制 | 提高医学图像诊断的准确性和泛化性能,处理不可观测的混杂因素 | 医学图像及其诊断标签 | digital pathology | NA | NA | CausalMixNet (基于混合注意力机制的深度学习模型) | image | 多个数据集,具体数量未提及 |
666 | 2025-05-15 |
A Scalable Deep Attention Mechanism of Instance Segmentation for the Investigation of Chromosome
2025-May-11, SLAS technology
IF:2.5Q3
DOI:10.1016/j.slast.2025.100306
PMID:40360085
|
research paper | 提出了一种用于染色体实例分割的可扩展深度注意力机制框架,整合了自动标注流程和增强的深度学习架构 | 引入了包含24种染色体类别的COCO格式新数据集,采用基于特征的图像配准技术自动生成高质量标注,并提出了增强的Mask R-CNN模型(包含AttFPN、空间注意力机制和LastLevelMaxPool块) | 虽然在小中型染色体分割上表现优异,但未明确说明对大型染色体的处理效果 | 解决细胞遗传学和基因组学中染色体分割的挑战 | 中期分裂相图像中的染色体 | digital pathology | NA | SIFT特征匹配和单应性变换 | 改进的Mask R-CNN(包含AttFPN和空间注意力机制) | 图像(中期分裂相图像和对应核型图) | 包含24种染色体类别的COCO格式标注数据集(具体样本量未说明) |
667 | 2025-05-15 |
Study on predicting breast cancer Ki-67 expression using a combination of radiomics and deep learning based on multiparametric MRI
2025-May-11, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2025.110401
PMID:40360135
|
研究论文 | 开发基于多参数乳腺MRI放射组学和深度学习的多模态模型,用于预测乳腺癌术前Ki-67表达状态 | 结合放射组学和深度学习技术,利用多参数MRI数据构建预测模型,显著提高了预测性能 | 样本量较小(176例),且仅基于单一机构数据 | 预测乳腺癌Ki-67表达状态,推进个体化治疗和精准医疗 | 176例浸润性乳腺癌患者 | 数字病理 | 乳腺癌 | 多参数MRI(T1WI、DWI、T2WI、DCE-MRI) | 深度学习多模态模型 | 医学影像 | 176例乳腺癌患者(训练集70%,测试集30%) |
668 | 2025-05-15 |
Compressed chromatographic fingerprint of Artemisiae argyi Folium empowered by 1D-CNN: Reduce mobile phase consumption using chemometric algorithm
2025-May-10, Journal of chromatography. A
DOI:10.1016/j.chroma.2025.465874
PMID:40101658
|
研究论文 | 本研究提出了一种结合一维卷积神经网络(1D-CNN)与高效液相色谱(HPLC)的压缩指纹图谱分析技术,旨在提高复杂系统中多种化合物的分析效率并减少有机溶剂的使用 | 结合1D-CNN与HPLC,开发压缩指纹图谱技术,显著减少分析时间和有机溶剂消耗 | 在分析的十种化合物中,仅九种取得了良好结果,表明模型对某些化合物的解释力有待提高 | 提高复杂系统中化合物分析的效率并减少有机溶剂消耗 | 艾叶(Artemisiae argyi Folium, AAF) | 化学计量学 | NA | 高效液相色谱(HPLC),一维卷积神经网络(1D-CNN) | 1D-CNN | 色谱数据 | NA |
669 | 2025-05-15 |
A novel framework for esophageal cancer grading: combining CT imaging, radiomics, reproducibility, and deep learning insights
2025-May-10, BMC gastroenterology
IF:2.5Q2
DOI:10.1186/s12876-025-03952-6
PMID:40348987
|
research paper | 该研究提出了一种结合CT成像、放射组学、可重复性和深度学习的新框架,用于食管癌分级 | 结合放射组学和深度学习特征,通过注意力机制增强模型准确性,并采用多种机器学习模型进行癌症分级 | 研究为回顾性研究,可能受到数据质量和手动分割肿瘤区域的主观性影响 | 创建可靠的食管癌分级框架,提高诊断准确性和可解释性 | 2560名食管癌患者的CT扫描图像和临床信息 | digital pathology | esophageal cancer | CT imaging, radiomics, deep learning | DenseNet121, EfficientNet-B0, Random Forest, XGBoost, CatBoost | image, clinical information | 2560名食管癌患者 |
670 | 2025-05-15 |
A subject transfer neural network fuses Generator and Euclidean alignment for EEG-based motor imagery classification
2025-May-09, Journal of neuroscience methods
IF:2.7Q3
DOI:10.1016/j.jneumeth.2025.110483
PMID:40350042
|
research paper | 提出了一种基于深度学习的迁移学习模型ST-GENN,用于改善脑机接口(BCI)中基于EEG的运动想象分类 | 结合Generator和欧几里得对齐的迁移学习模型,有效将源域数据分布迁移至目标域 | 未明确提及具体局限性 | 解决个体间EEG信号差异问题,提高BCI分类准确率 | 脑电信号(EEG)和运动想象分类 | 脑机接口 | NA | 迁移学习 | ST-GENN (结合Generator和欧几里得对齐的神经网络), CAT分类器 | EEG信号 | BCI competition IV 2a、2b和SHU数据集 |
671 | 2025-05-15 |
Deep learning-driven hyperspectral imaging for real-time monitoring and growth modeling of psychrophilic spoilage bacteria in chilled beef
2025-May-09, International journal of food microbiology
IF:5.0Q1
|
研究论文 | 本研究利用深度学习驱动的高光谱成像技术,实时监测和建模冷藏牛肉中嗜冷腐败细菌的生长 | 结合高光谱成像和多种算法(如CARS、PLSR、SCN等)进行细菌生长建模,实现了冷藏牛肉中细菌含量的快速无损检测 | 模型预测精度仍有提升空间,特别是对乳酸杆菌的预测效果相对较差 | 开发一种快速无损检测冷藏牛肉中嗜冷细菌含量的方法 | 冷藏牛肉中的假单胞菌和乳酸杆菌 | 数字病理 | NA | 高光谱成像、平板计数法 | PLSR、SCN、时间卷积网络结合多头注意力机制 | 光谱数据 | 未明确说明样本数量(冷藏牛肉样品) |
672 | 2025-05-15 |
Impact of spectrum bias on deep learning-based stroke MRI analysis
2025-May-08, European journal of radiology
IF:3.2Q1
DOI:10.1016/j.ejrad.2025.112161
PMID:40359732
|
研究论文 | 评估在卒中MRI分析中排除不确定急性缺血性病变(AIL)病例对深度学习工具诊断效能的影响 | 揭示了排除不确定病例会导致诊断比值比被高估四倍,并识别了与不确定AIL相关的独立因素 | 单中心回顾性研究可能限制结果的普遍性 | 评估卒中MRI分析中的频谱偏倚及其影响因素 | 疑似卒中成年患者的脑部MRI数据 | 数字病理学 | 心血管疾病 | 脑部MRI分析 | 深度学习工具 | 医学影像 | 989名患者(中位年龄73岁,53%女性) |
673 | 2025-05-15 |
The informativeness of the gradient revisited
2025-May-08, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107517
PMID:40359739
|
research paper | 本文探讨了梯度信息在深度学习中的有效性,并提出了一个衡量梯度方差的一般性界限 | 提出了一个衡量梯度方差的一般性界限,并将其应用于Learning with Errors (LWE)映射和高频函数类 | 理论分析可能无法完全覆盖所有实际应用场景,实验部分仅针对特定类型的函数进行了验证 | 深入理解梯度信息在深度学习中的局限性 | 梯度信息的有效性及其在深度学习中的应用 | machine learning | NA | NA | NA | NA | NA |
674 | 2025-05-15 |
Smartphone-integrated Nanozyme approaches for rapid and on-site detection: Empowering smart food safety
2025-May-07, Food chemistry
IF:8.5Q1
DOI:10.1016/j.foodchem.2025.144678
PMID:40359792
|
综述 | 本文综述了智能手机集成的纳米酶技术在快速、现场食品安全分析中的应用及其进展 | 探讨了智能手机与纳米酶技术结合用于实时生物传感的潜力,以及与AI、ML、DL和3D打印技术结合的创新应用 | 存在提高灵敏度、实现多重检测和现场应用验证等关键挑战 | 推动智能食品安全系统的发展,实现实时和现场检测以确保食品质量和公共健康 | 食源性病原体、污染物和危害物 | 食品安全 | NA | 纳米酶技术、AI、ML、DL、3D打印 | NA | 实时生物传感数据 | NA |
675 | 2025-05-15 |
Perspectives: Comparison of deep learning segmentation models on biophysical and biomedical data
2025-May-06, Biophysical journal
IF:3.2Q2
DOI:10.1016/j.bpj.2025.03.023
PMID:40158204
|
研究论文 | 本文比较了深度学习分割模型在生物物理和生物医学数据上的表现 | 提供了四种常用深度学习架构在典型小规模训练数据集上的全面比较,并建立了确定每种模型最佳使用条件的标准 | 研究仅关注了四种特定模型架构,可能未涵盖所有相关模型 | 为生物物理学领域的研究人员和实践者提供选择最适合特定应用的深度学习架构的实用指南 | 四种深度学习架构(CNN、U-Nets、vision transformers和vision state space models) | 生物物理学 | NA | 深度学习 | CNN, U-Nets, vision transformers, vision state space models | 生物物理和生物医学数据 | 典型的小规模训练数据集 |
676 | 2025-05-15 |
Deep learning-based image classification and quantification models for tablet sticking
2025-May-06, International journal of pharmaceutics
IF:5.3Q1
DOI:10.1016/j.ijpharm.2025.125690
PMID:40339626
|
研究论文 | 本研究提出了一种基于深度学习的图像分类和量化模型,用于检测和量化药片粘附现象 | 结合CNN和GLCM特征与支持向量机,开发了一种新型集成模型,用于分类和量化药片粘附 | 尽管模型能检测轻微粘附,但药片质量属性仍可能符合标准,暗示视觉检查和质量属性评估可能不足以检测所有粘附情况 | 提高药物片剂生产的效率和质量一致性,克服视觉检查的局限性 | 药物片剂的粘附现象 | 计算机视觉 | NA | CNN, GLCM, 支持向量机 | AlexNet, VGG 16, ResNet 50, GoogLeNet | 图像 | 10批药片 |
677 | 2025-05-15 |
Deep learning-assisted 10-μL single droplet-based viscometry for human aqueous humor
2025-May-02, Biosensors & bioelectronics
IF:10.7Q1
DOI:10.1016/j.bios.2025.117530
PMID:40359807
|
研究论文 | 本文介绍了一种基于深度学习的微流控粘度测量方法,用于测量10微升的人眼房水粘度 | 首次实现了对10微升人眼房水粘度的测量,并观察到个体间约30%的差异 | 未提及样本的具体数量或多样性限制 | 优化青光眼治疗中的微管分流器设计 | 人眼房水 | 生物医学技术 | 青光眼 | 微流控技术 | 深度学习 | 图像 | 10微升单滴样本 |
678 | 2025-05-15 |
Automated detection of arrhythmias using a novel interpretable feature set extracted from 12-lead electrocardiogram
2025-May, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.109957
PMID:40090185
|
研究论文 | 本研究提出了一种基于特征的方法,用于从12导联心电图中自动检测心律失常,该方法在保持与深度学习相当性能的同时提供了更高的临床可解释性 | 提出了一种新颖的可解释特征集,结合数学技术如傅里叶变换、小波变换和互相关来评估心电图特征,并通过SHAP值分析优化特征集 | 在外部测试数据集上的性能有所下降(F1分数从81%降至68%) | 开发一种兼具高准确性和临床可解释性的心律失常自动诊断系统 | 12导联心电图数据 | 机器学习 | 心血管疾病 | 傅里叶变换、小波变换、互相关 | eXtreme Gradient Boosting (XGBoost) | 心电图信号 | 未明确提及具体样本数量,但使用了大规模心电图数据库 |
679 | 2025-05-15 |
Automatic pre-screening of outdoor airborne microplastics in micrographs using deep learning
2025-May-01, Environmental pollution (Barking, Essex : 1987)
DOI:10.1016/j.envpol.2025.125993
PMID:40090454
|
研究论文 | 本文提出了一种利用深度学习自动预筛选户外空气中微塑料的新方法 | 通过增强的U-Net模型(Attention U-Net和Dynamic RU-NEXT)及Mask R-CNN在低分辨率显微图像中识别和分类户外空气中的微塑料,创新性地将分类直接集成到基于U-Net的分割框架中,提高了计算效率 | NA | 提高户外空气中微塑料的识别和分类效率 | 户外空气中的微塑料 | 计算机视觉 | NA | 深度学习 | Attention U-Net, Dynamic RU-NEXT, Mask R-CNN | 图像 | NA |
680 | 2025-05-15 |
Extraction of fetal heartbeat locations in abdominal phonocardiograms using deep attention transformer
2025-May, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.110002
PMID:40096767
|
research paper | 提出了一种名为FHSU-NETR的深度学习模型,用于从原始PCG信号中直接提取胎儿和母亲的心率 | 利用transformer的自注意力机制,增强模型模拟远程交互和捕获全局上下文的能力 | 研究仅验证了20名正常受试者的数据,样本量较小 | 提高胎儿健康监测的可及性和可靠性 | 胎儿和母亲的心率 | machine learning | 心血管疾病 | Phonocardiography (PCG) | U-NetR, transformer | PCG信号 | 20名正常受试者,包括一例胎儿心动过速心律失常病例 |