本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6821 | 2025-03-11 |
Re: An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening
2020-01-01, Journal of the National Cancer Institute
DOI:10.1093/jnci/djz115
PMID:31187115
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
6822 | 2025-03-11 |
An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening
2019-09-01, Journal of the National Cancer Institute
DOI:10.1093/jnci/djy225
PMID:30629194
|
研究论文 | 本研究开发了一种基于深度学习的视觉评估算法,用于自动识别宫颈癌前病变/癌症 | 利用深度学习技术自动评估宫颈图像,提高了宫颈癌筛查的准确性和可重复性 | 研究依赖于历史数据,可能无法完全反映当前技术的最新进展 | 开发一种自动识别宫颈癌前病变/癌症的视觉评估算法 | 9406名18-94岁的女性,来自哥斯达黎加瓜纳卡斯特地区 | 计算机视觉 | 宫颈癌 | 深度学习 | 深度学习算法 | 图像 | 9406名女性,年龄18-94岁 |
6823 | 2025-03-10 |
Forecasting the eddying ocean with a deep neural network
2025-Mar-06, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-025-57389-2
PMID:40050275
|
研究论文 | 本文开发了一个名为WenHai的数据驱动全球海洋预报系统,通过训练深度神经网络来预测海洋中尺度涡旋的短期演变 | 首次将深度神经网络应用于全球海洋预报系统,并结合动量、热量和淡水通量的体公式来改进海气相互作用的表示 | 由于大气和海洋的动态特性不同,AI方法在海洋预报中的应用仍具有挑战性 | 提高全球海洋预报能力,特别是中尺度涡旋的短期演变预测 | 海洋中尺度涡旋 | 机器学习 | NA | 深度神经网络 | DNN | 海洋数据 | NA |
6824 | 2025-03-10 |
Classifying microfossil radiolarians on fractal pre-trained vision transformers
2025-Mar-06, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-90988-z
PMID:40050318
|
研究论文 | 本文探讨了使用预训练的视觉变换器(ViT)和公式驱动的监督学习(FDSL)技术对微化石(放射虫)进行分类的效果 | 首次将视觉变换器(ViT)和公式驱动的监督学习(FDSL)应用于地质学中的微化石分类,相比传统CNN模型,平均精度提高了6-8% | 未提及具体样本量和数据集的多样性,可能影响模型的泛化能力 | 探索新的深度学习技术在地质学图像分类中的应用 | 微化石(放射虫) | 计算机视觉 | NA | 公式驱动的监督学习(FDSL) | 视觉变换器(ViT) | 图像 | NA |
6825 | 2025-03-10 |
Deep learning-based image analysis in muscle histopathology using photo-realistic synthetic data
2025-Mar-06, Communications medicine
IF:5.4Q1
DOI:10.1038/s43856-025-00777-y
PMID:40050400
|
研究论文 | 本文介绍了一种名为SYNTA的新方法,用于生成逼真的合成生物医学图像数据,以解决当前生成模型和基于深度学习的图像分析中的挑战 | SYNTA方法采用完全参数化的方法创建针对特定生物医学任务的逼真合成训练数据集,解决了现有生成模型缺乏代表性和高质量真实数据的问题 | 需要进一步验证SYNTA方法在其他生物医学领域的适用性和效果 | 旨在通过生成逼真的合成生物医学图像数据,改进和加速生物医学图像分析 | 肌肉组织病理学和骨骼肌分析 | 数字病理学 | NA | 深度学习和生成模型 | GAN, Diffusion Models | 图像 | 两个真实世界的数据集 |
6826 | 2025-03-10 |
Frequency transfer and inverse design for metasurface under multi-physics coupling by Euler latent dynamic and data-analytical regularizations
2025-Mar-06, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-025-57516-z
PMID:40050630
|
研究论文 | 本文提出了一种多物理深度学习框架(MDLF),用于解决频率转移和多物理耦合问题,并在超表面设计中实现了未见频率段的预测 | 提出了结合多保真度DeepONet、欧拉潜在动态网络和数据解析反演网络的MDLF框架,能够在缺乏多物理响应知识的情况下,通过动态利用欧拉潜在空间和单物理信息,实现对未见频率段的预测 | 需要进一步验证在更广泛的多物理耦合场景下的适用性 | 解决频率转移问题,并实现超表面在未见频率段的多物理耦合预测 | 超表面 | 机器学习 | NA | 多物理深度学习框架(MDLF) | DeepONet, 欧拉潜在动态网络, 数据解析反演网络 | 频谱数据 | NA |
6827 | 2025-03-10 |
CUGUV: A Benchmark Dataset for Promoting Large-Scale Urban Village Mapping with Deep Learning Models
2025-Mar-06, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-025-04701-w
PMID:40050634
|
研究论文 | 本文介绍了CUGUV基准数据集,旨在通过深度学习模型促进大规模城中村(UV)的映射 | 提出了一个包含来自中国15个主要城市的数千个UV样本的基准数据集,并开发了一个创新的框架,有效整合和学习了多种数据源,以更好地解决跨城市UV映射任务 | 数据集主要集中在中国的城市,可能限制了其全球适用性 | 提高大规模城中村映射的准确性和模型的可转移性 | 城中村(UV) | 计算机视觉 | NA | 深度学习 | NA | 卫星图像 | 数千个UV样本,来自中国15个主要城市 |
6828 | 2025-03-10 |
Systematic review and meta-analysis of artificial intelligence in classifying HER2 status in breast cancer immunohistochemistry
2025-Mar-06, NPJ digital medicine
IF:12.4Q1
DOI:10.1038/s41746-025-01483-8
PMID:40050686
|
meta-analysis | 本文通过诊断性meta分析评估了人工智能在分类HER2免疫组化评分中的表现,展示了其在预测T-DXd资格方面的高准确性 | 首次系统评估了人工智能在HER2免疫组化评分分类中的表现,并揭示了深度学习和基于补丁的分析方法在提高准确性方面的优势 | 在外部验证和使用商业化算法的研究中,AI的表现有所下降 | 评估人工智能在分类HER2免疫组化评分中的准确性和潜力 | 乳腺癌患者的HER2免疫组化评分 | digital pathology | breast cancer | 免疫组化(IHC) | 深度学习 | 图像 | NA |
6829 | 2025-03-10 |
Signature-based intrusion detection using machine learning and deep learning approaches empowered with fuzzy clustering
2025-Jan-11, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-85866-7
PMID:39799225
|
研究论文 | 本研究旨在通过结合机器学习和深度学习方法改进网络安全中的入侵检测 | 结合了多种机器学习(如SVM、KNN、RF、DT)和深度学习(如LSTM、ANN)模型,并引入了模糊聚类技术,以提高入侵检测的准确性和效率 | 未提及具体的样本大小或数据集细节,可能限制了结果的普适性 | 提高网络安全性,通过改进入侵检测系统(IDS)来识别和预防网络攻击 | 网络流量数据 | 机器学习 | NA | 模糊聚类 | SVM, KNN, RF, DT, LSTM, ANN | 网络流量数据 | NA |
6830 | 2025-03-10 |
Deep learning-driven ultrasound equipment quality assessment with ATS-539 phantom data
2025-Jan, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2024.105698
PMID:39541619
|
研究论文 | 本研究提出了一种基于深度学习的双阶段框架,用于客观评估超声图像质量,使用ATS-539体模数据 | 引入双阶段深度学习框架,结合逻辑回归模型,实现超声图像质量的定量和客观评估 | 依赖于体模数据,可能无法完全反映真实临床环境中的图像质量 | 开发一种客观评估超声图像质量的方法,以提高诊断准确性 | 超声图像质量 | 计算机视觉 | NA | 深度学习 | 分类模型、逻辑回归模型 | 图像 | ATS-539体模数据 |
6831 | 2025-03-10 |
An interpretable generative multimodal neuroimaging-genomics framework for decoding alzheimer's disease
2024-Nov-14, ArXiv
PMID:38947922
|
研究论文 | 本文提出了一种可解释的生成多模态神经影像-基因组学框架,用于解码阿尔茨海默病 | 提出了一种新的深度学习分类框架,采用循环生成对抗网络(cGAN)在潜在空间中填补缺失数据,并采用可解释的人工智能方法(XAI)提取输入特征的相关性 | 未明确提及具体限制 | 解码阿尔茨海默病的潜在机制,进行AD检测和MCI转化预测 | 阿尔茨海默病患者和轻度认知障碍(MCI)患者 | 数字病理学 | 老年病 | 结构性和功能性磁共振成像(sMRI/fMRI),单核苷酸多态性(SNPs) | 循环生成对抗网络(cGAN) | 神经影像数据,基因组数据 | 未明确提及具体样本数量 |
6832 | 2025-03-10 |
Data-driven fine-grained region discovery in the mouse brain with transformers
2024-Jun-13, bioRxiv : the preprint server for biology
DOI:10.1101/2024.05.05.592608
PMID:38766132
|
研究论文 | 本文开发了一种无监督训练方案和基于transformer的深度学习架构,用于利用空间转录组学数据检测小鼠全脑的空间区域 | 提出了一种新的transformer深度学习架构,能够从粗到细粒度地识别小鼠大脑中的空间区域,并发现了一些以前未分类的亚区域 | NA | 研究小鼠大脑的空间组织 | 小鼠大脑 | 数字病理学 | NA | 空间转录组学 | transformer | 空间转录组学数据 | 多个小鼠的全脑数据 |
6833 | 2025-03-10 |
Explainability of three-dimensional convolutional neural networks for functional magnetic resonance imaging of Alzheimer's disease classification based on gradient-weighted class activation mapping
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0303278
PMID:38771733
|
研究论文 | 本文通过应用梯度加权类激活映射(Grad-CAM)等方法,提高了基于fMRI的3D-VGG16网络在阿尔茨海默病(AD)诊断中的可解释性 | 本文的创新点在于使用多种静息态功能活动图(如ALFF、fALFF、ReHo和VMHC)来降低fMRI数据的复杂性,并采用3D-VGG16网络进行AD分类,同时通过GAP层缓解过拟合问题 | 本文的局限性在于手动特征提取方法可能增加模型负担,且仅针对AD和正常对照组进行了研究,未涉及其他神经系统疾病 | 研究目的是探索模型在预测时主要关注的大脑感兴趣区域(ROI),以及AD患者和正常对照组之间这些ROI的差异 | 研究对象为阿尔茨海默病患者和正常对照组 | 数字病理学 | 阿尔茨海默病 | fMRI | 3D-VGG16 | 图像 | 未提及具体样本数量 |
6834 | 2025-03-10 |
Fibration symmetry uncovers minimal regulatory networks for logical computation in bacteria
2023-Oct-17, ArXiv
PMID:37904746
|
研究论文 | 本文通过对称纤维化方法简化了细菌的基因调控网络,保留了信息流并突出了网络的计算能力 | 使用对称纤维化方法简化复杂的生物系统,揭示细菌基因调控网络的计算核心 | NA | 研究细菌基因调控网络的计算能力和信息传递机制 | 细菌的基因调控网络 | 生物信息学 | NA | 对称纤维化方法 | NA | 基因调控网络数据 | NA |
6835 | 2025-03-10 |
Computed Tomography-Based Deep Learning Nomogram Can Accurately Predict Lymph Node Metastasis in Gastric Cancer
2023-04, Digestive diseases and sciences
IF:2.5Q2
DOI:10.1007/s10620-022-07640-3
PMID:35909203
|
研究论文 | 本文评估并验证了基于计算机断层扫描的深度学习在胃癌患者术前淋巴结转移评估中的预测性能 | 结合深度学习特征和临床预测因子建立了一个nomogram,显著提高了淋巴结转移预测的准确性 | 研究为回顾性研究,样本量相对较小,可能影响模型的泛化能力 | 评估和验证基于计算机断层扫描的深度学习在胃癌患者术前淋巴结转移评估中的预测性能 | 胃癌患者 | 计算机视觉 | 胃癌 | 计算机断层扫描(CT) | ResNet50, 随机森林(RF) | 图像 | 347名患者(训练队列:242,测试队列:105) |
6836 | 2025-03-10 |
Deep Learning Identifies Cardiomyocyte Nuclei With High Precision
2020-08-14, Circulation research
IF:16.5Q1
DOI:10.1161/CIRCRESAHA.120.316672
PMID:32486999
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
6837 | 2025-03-09 |
Self-Supervised High-Order Information Bottleneck Learning of Spiking Neural Network for Robust Event-Based Optical Flow Estimation
2025-Apr, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2024.3510627
PMID:40030563
|
研究论文 | 本文提出了一种基于脉冲神经网络(SNN)的自监督高阶信息瓶颈学习算法SeLHIB,用于在噪声环境下鲁棒地估计基于事件的光流 | 首次提出了基于SNN的自监督信息瓶颈学习策略,并开发了非线性和高阶信息瓶颈学习算法,以增强相关信息的提取和消除冗余 | 现有SNN架构在训练过程中存在泛化能力和鲁棒性不足的问题,特别是在噪声场景中 | 提高基于事件的光流估计的泛化能力和鲁棒性,特别是在噪声环境下 | 基于事件的光流估计 | 计算机视觉 | NA | 自监督学习算法 | SNN(脉冲神经网络) | 事件相机输入 | NA |
6838 | 2025-03-09 |
Quantum Gated Recurrent Neural Networks
2025-Apr, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2024.3519605
PMID:40030602
|
研究论文 | 本文提出了一种量子门控循环神经网络(QGRNNs)模型,旨在解决传统循环神经网络中的梯度消失和爆炸问题,并展示了其在序列学习任务中的有效性 | 将门控机制自然集成到量子神经网络的变分ansatz电路框架中,解决了传统循环神经网络的梯度消失和爆炸问题,并有效缓解了贫瘠高原现象 | NA | 探索量子神经网络(QNNs)的量子优势,并解决传统循环神经网络中的梯度消失和爆炸问题 | 量子门控循环神经网络(QGRNNs) | 量子机器学习 | NA | 量子计算 | 量子门控循环神经网络(QGRNNs) | 序列数据 | NA |
6839 | 2025-03-09 |
Glissando-Net: Deep Single View Category Level Pose Estimation and 3D Reconstruction
2025-Apr, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2024.3519674
PMID:40030789
|
研究论文 | 本文提出了一种名为Glissando-Net的深度学习模型,用于从单个RGB图像中同时估计类别级物体的姿态并重建其3D形状 | Glissando-Net通过两个联合训练的自动编码器(一个用于RGB图像,另一个用于点云)实现了更准确的3D形状和姿态预测,并引入了2D-3D特征交互和直接预测3D形状与姿态的设计 | 在测试阶段,3D点云的编码器被丢弃,可能限制了模型在某些场景下的表现 | 研究目标是从单个RGB图像中同时估计物体的姿态并重建其3D形状 | 研究对象是类别级物体 | 计算机视觉 | NA | 深度学习 | 自动编码器(Auto-encoders) | RGB图像和点云数据 | NA |
6840 | 2025-03-09 |
Latent Weight Quantization for Integerized Training of Deep Neural Networks
2025-Apr, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2025.3527498
PMID:40030978
|
研究论文 | 本文提出了一种用于深度神经网络整数化训练的潜在权重量化方案,旨在减少量化对训练过程的扰动 | 首次提出了一种通用的整数化训练潜在权重量化方案,通过残差量化和优化的双量化器最小化量化扰动 | 未明确提及具体限制,但可能涉及硬件实现的复杂性和对不同架构的适应性 | 提高深度神经网络整数化训练的效率和性能 | 深度神经网络,包括ResNets、MobileNetV2和Transformers | 机器学习 | NA | 残差量化和双量化器 | ResNets, MobileNetV2, Transformers | 图像和文本 | 未明确提及具体样本数量,但涉及多种架构和任务 |