深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 25032 篇文献,本页显示第 6821 - 6840 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
6821 2025-03-16
NiSNN-A: Noniterative Spiking Neural Network With Attention With Application to Motor Imagery EEG Classification
2025-Mar-14, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文提出了一种结合注意力机制的非迭代脉冲神经网络(NiSNN-A),用于运动想象(MI)脑电图(EEG)分类,旨在提高精度并降低能耗 提出了一种非迭代漏积分发放(NiLIF)神经元模型,解决了传统SNN在长时间步中使用迭代LIF神经元的梯度问题,并引入了基于序列的注意力机制来优化特征图 尽管NiSNN-A在精度和能效上有所提升,但其在EEG分类任务中的表现仍需进一步验证和优化 提高运动想象(MI)脑电图(EEG)分类的精度并降低能耗 运动想象(MI)脑电图(EEG)数据 机器学习 NA NA 非迭代脉冲神经网络(NiSNN-A) 脑电图(EEG)数据 两个MI EEG数据集(OpenBMI和BCIC IV 2a)
6822 2025-03-16
Fast and reliable probabilistic reflectometry inversion with prior-amortized neural posterior estimation
2025-Mar-14, Science advances IF:11.7Q1
研究论文 本文提出了一种新的概率深度学习方法,用于快速可靠地从X射线或中子散射测量中重建薄膜和多层结构 提出了一种名为PANPE(先验摊销神经后验估计)的新方法,结合了基于模拟的推理和自适应先验,能够在几秒钟内识别所有现实结构 未明确提及具体限制 提高从反射测量数据中重建薄膜和多层结构的可靠性和计算效率 薄膜和多层结构 物理学 NA 反射测量 PANPE(先验摊销神经后验估计) X射线或中子散射测量数据 未明确提及具体样本数量
6823 2025-03-16
A deep learning-based clinical-radiomics model predicting the treatment response of immune checkpoint inhibitors (ICIs)-based conversion therapy in potentially convertible hepatocelluar carcinoma patients: a tumour marker prognostic study
2025-Mar-14, International journal of surgery (London, England)
研究论文 本文开发了一种基于CT的临床-放射组学模型,用于预测潜在可转化肝细胞癌患者对免疫检查点抑制剂(ICIs)治疗的持久临床获益(DCB) 结合放射组学特征、深度学习模型和临床变量,构建了一个综合模型,能够有效预测ICIs治疗的DCB,并揭示与免疫相关机制的关联 模型的预测能力在训练集和测试集之间存在一定差异,且需要进一步验证其在不同人群中的适用性 开发一种预测模型,用于评估潜在可转化肝细胞癌患者对ICIs治疗的响应 潜在可转化肝细胞癌患者 数字病理学 肝细胞癌 CT成像、放射组学分析、RNA和DNA测序 深度学习模型 CT图像、临床数据、RNA和DNA测序数据 未明确提及具体样本数量
6824 2025-03-16
The effect of cryopreservation on enamel microcracks - A μCT analysis using a deep learning algorithm
2025-Mar-13, Cryobiology IF:2.3Q3
研究论文 本研究通过μCT分析和深度学习算法,探讨了冷冻保存对牙釉质微裂纹的影响 首次使用深度学习算法对冷冻保存引起的牙釉质裂纹进行直接评估,并提出了可扩展且精确的量化方法 研究样本量较小,仅涉及5颗牙齿,且未探讨裂纹对牙齿功能的具体影响 研究冷冻保存对牙釉质微裂纹的影响 牙釉质微裂纹 计算机视觉 NA μCT分析 U-Net 图像 5颗牙齿
6825 2025-03-16
Deep learning models in classifying primary bone tumors and bone infections based on radiographs
2025-Mar-13, NPJ precision oncology IF:6.8Q1
研究论文 本研究开发了一种集成深度学习框架,用于基于X光片准确区分原发性骨肿瘤和骨感染 提出了一种集成深度学习框架,结合多中心X光片和广泛的临床特征,提高了诊断准确性 研究依赖于特定数据集,可能无法完全推广到其他医疗环境 提高原发性骨肿瘤和骨感染的诊断精度 原发性骨肿瘤和骨感染 计算机视觉 骨肿瘤 深度学习 EfficientNet B3, EfficientNet B4, Vision Transformer, Swin Transformers X光片 外部数据集423例,内部数据集1044例(训练集)、354例(测试集)、171例(验证集)
6826 2025-03-16
AI in Histopathology Explorer for comprehensive analysis of the evolving AI landscape in histopathology
2025-Mar-12, NPJ digital medicine IF:12.4Q1
研究论文 本文介绍了AI在组织病理学中的应用探索器(HistoPathExplorer),一个实时在线资源,用于评估AI在特定临床任务中的应用现状、分析其性能并探索影响其转化为实践的因素 开发了一个交互式仪表板HistoPathExplorer,提供了一个实时在线资源,用于评估AI在组织病理学中的应用现状,并定义了一个质量指数来评估已发表AI方法的全面性 未明确提及具体的研究限制 深入了解应用于组织病理学数据的深度学习算法方法,并评估其在不同任务中的表现,以开发下一代AI技术 组织病理学数据 数字病理学 癌症 深度学习算法 NA 组织病理学数据 NA
6827 2025-03-16
Image classification-driven speech disorder detection using deep learning technique
2025-Mar-06, SLAS technology IF:2.5Q3
研究论文 本文提出了一种基于图像分类的自动语音障碍检测模型,通过Mel-Spectrogram分类来识别多种语音障碍 使用增强的LEVIT变换器进行特征提取,并采用集成学习方法进行分类,同时利用量化感知训练减少计算资源,提供模型可解释性 模型在多语言和多方言环境下的应用需要进一步研究,以提升实时临床和远程医疗部署的适应性 开发一种自动化的语音障碍检测模型,以提高诊断的准确性和效率 语音障碍患者 自然语言处理 语音障碍 小波变换(WT)杂交技术,量化感知训练(QAT) LEVIT变换器,集成学习(EL) 语音样本生成的Mel-Spectrogram图像 使用了VOICED和LANNA数据集
6828 2025-03-16
Advanced NLP-driven predictive modeling for tailored treatment strategies in gastrointestinal cancer
2025-Mar-06, SLAS technology IF:2.5Q3
研究论文 本研究旨在开发一种基于自然语言处理(NLP)的预测建模框架,用于胃肠道癌症的个性化治疗策略 提出了Resilient Adam Algorithm驱动的Versatile Long-Short Term Memory (RAA-VLSTM)模型,用于分析临床数据,并通过RAA优化算法提高训练效率 研究依赖于电子健康记录(EHRs)的质量和完整性,可能受到数据偏差的影响 开发一种先进的NLP驱动的预测建模框架,以改善胃肠道癌症的个性化治疗策略 胃肠道癌症患者 自然语言处理 胃肠道癌症 自然语言处理(NLP),深度学习 RAA-VLSTM 电子健康记录(EHRs) 来自多个医疗中心的广泛电子健康记录(EHRs)
6829 2025-03-16
Fine-Tuned Machine Learning Classifiers for Diagnosing Parkinson's Disease Using Vocal Characteristics: A Comparative Analysis
2025-Mar-06, Diagnostics (Basel, Switzerland)
研究论文 本文通过优化机器学习算法,利用声音特征对帕金森病进行分类,旨在提供一种非侵入性且易于访问的诊断工具 结合先进的特征选择技术和超参数优化策略,提升基于声音特征的机器学习诊断帕金森病的性能,特别是堆叠模型通过网格搜索调优表现出最佳性能 未来研究可关注深度学习方法和时间特征整合,以进一步提高诊断准确性和临床应用的扩展性 评估优化后的机器学习算法在基于声音特征分类帕金森病中的有效性 188名帕金森病患者和64名对照者的声音样本 机器学习 帕金森病 贝叶斯优化、网格搜索、随机搜索 SVM、k-NN、DT、NN、集成模型、堆叠模型 声音数据 252人(188名患者和64名对照者)
6830 2025-03-16
Secure Hybrid Deep Learning for MRI-Based Brain Tumor Detection in Smart Medical IoT Systems
2025-Mar-06, Diagnostics (Basel, Switzerland)
研究论文 本文提出了一种结合混沌和Arnold加密技术与混合深度学习模型的自动化MRI图像分类系统,用于智能医疗物联网系统中的脑肿瘤检测 结合混沌和Arnold加密技术,确保MRI图像的机密性,同时不降低脑肿瘤分类的准确性 未提及具体的研究局限性 开发一种安全且自动化的MRI图像分类系统,用于脑肿瘤检测 MRI图像 计算机视觉 脑肿瘤 混沌加密、Arnold加密 VGG16、深度神经网络(DNN) 图像 未提及具体样本数量
6831 2025-03-16
Exploring the Role of Artificial Intelligence (AI)-Driven Training in Laparoscopic Suturing: A Systematic Review of Skills Mastery, Retention, and Clinical Performance in Surgical Education
2025-Mar-06, Healthcare (Basel, Switzerland)
系统综述 本文系统综述了人工智能(AI)驱动的培训系统在腹腔镜缝合技能掌握、长期保持和临床表现方面的作用 本文创新性地评估了AI在腹腔镜缝合培训中的应用,特别是深度学习、动作捕捉和视频分割等机器学习技术的优势和局限性 AI在准确性、可扩展性和集成方面仍存在局限性,需要进一步的大规模高质量研究来完善这些工具 评估AI在腹腔镜缝合技能获取、长期保持和临床表现方面的影响 腹腔镜缝合培训中的机器学习技术 机器学习 NA 深度学习、动作捕捉、视频分割 NA 视频、动作数据 33项研究符合纳入标准
6832 2025-03-16
Comparing and Combining Artificial Intelligence and Spectral/Statistical Approaches for Elevating Prostate Cancer Assessment in a Biparametric MRI: A Pilot Study
2025-Mar-05, Diagnostics (Basel, Switzerland)
研究论文 本研究比较并结合了人工智能和光谱/统计方法,以提升双参数MRI中前列腺癌评估的准确性 首次将自监督网格网络(Z-SSMNet)与光谱/统计方法结合,用于前列腺癌评估 样本量较小(42名患者),且深度学习/人工智能方法表现不如光谱/统计方法 评估和改进光谱/统计方法,结合人工智能提升前列腺癌评估准确性 前列腺癌患者 数字病理学 前列腺癌 深度学习(DL),光谱/统计方法 Z-SSMNet(自监督网格网络) MRI图像 42名患者
6833 2025-03-16
Explainable Artificial Intelligence in Neuroimaging of Alzheimer's Disease
2025-Mar-04, Diagnostics (Basel, Switzerland)
综述 本文探讨了可解释人工智能(XAI)在阿尔茨海默病(AD)神经影像学中的应用 强调了XAI在提高AI模型透明度和临床适用性方面的创新,特别是在AD诊断中的应用 当前挑战包括数据集限制、监管问题和标准化问题 改进XAI在临床实践中的整合,以优化AD诊断和个性化治疗策略 阿尔茨海默病(AD)的神经影像数据 神经影像学 阿尔茨海默病 SHAP, LIME, Grad-CAM, Layer-wise Relevance Propagation (LRP) 深度学习, 机器学习 MRI, PET影像 NA
6834 2025-03-16
Enhancing Lymph Node Metastasis Risk Prediction in Early Gastric Cancer Through the Integration of Endoscopic Images and Real-World Data in a Multimodal AI Model
2025-Mar-03, Cancers IF:4.5Q1
研究论文 本研究旨在开发和验证一种基于深度学习的临床决策支持系统(CDSS),用于预测早期胃癌(EGC)中的淋巴结转移(LNM)和淋巴血管侵犯(LVI) 通过整合内镜图像、人口统计数据、活检病理和CT检查结果,开发了一种基于Transformer的多模态AI模型,显著提高了LNM/LVI的预测准确性 研究依赖于多机构数据,可能存在数据异质性问题,且外部验证样本量相对较小 提高早期胃癌中淋巴结转移和淋巴血管侵犯的预测准确性,以指导治疗策略 早期胃癌患者 数字病理 胃癌 深度学习 Transformer, CNN, 随机森林 图像, 人口统计数据, 活检病理, CT检查结果 2927名患者(训练集),449名患者(内部验证集),766名患者(外部验证集)
6835 2025-03-16
Enhancing patient representation learning with inferred family pedigrees improves disease risk prediction
2025-Mar-01, Journal of the American Medical Informatics Association : JAMIA IF:4.7Q1
研究论文 本文提出了一种名为ALIGATEHR的方法,通过建模推断的家庭关系并结合基于注意力的医学本体表示,提高了疾病风险预测的准确性 ALIGATEHR首次在电子健康记录(EHR)研究中显式建模家庭关系,结合图注意力网络和医学本体表示,捕捉遗传、共享环境暴露和疾病依赖性的复杂影响 研究依赖于推断的家庭关系,可能存在不准确性,且未详细讨论模型在不同人群中的泛化能力 通过建模家庭关系,提高电子健康记录(EHR)中的疾病风险预测能力 电子健康记录(EHR)中的患者数据及其推断的家庭关系 机器学习 炎症性肠病(克罗恩病和溃疡性结肠炎) 图注意力网络(GAT) ALIGATEHR 电子健康记录(EHR)诊断数据 未明确提及具体样本数量
6836 2025-03-16
Clinical value of aortic arch morphology in transfemoral TAVR: artificial intelligence evaluation
2025-Mar-01, International journal of surgery (London, England)
研究论文 本研究利用人工智能算法评估主动脉弓形态对经股动脉导管主动脉瓣置换术(TF-TAVR)患者临床结果的影响 首次使用深度学习评估主动脉弓形态对TF-TAVR患者临床结果的影响,并构建了预测模型 研究为回顾性研究,可能存在选择偏倚 评估主动脉弓形态对TF-TAVR患者临床结果的影响 接受TF-TAVR的患者 数字病理学 心血管疾病 深度学习,机器学习 随机森林,逻辑回归 医学影像 1480名连续接受TF-TAVR的患者
6837 2025-03-16
Assessing Image Quality in Multiplexed Sensitivity-Encoding Diffusion-Weighted Imaging with Deep Learning-Based Reconstruction in Bladder MRI
2025-Feb-28, Diagnostics (Basel, Switzerland)
研究论文 本研究比较了传统多路复用灵敏度编码扩散加权成像(MUSE-DWI)与深度学习MUSE-DWI在膀胱MRI中的图像质量,并应用了供应商特定的深度学习(DL)重建技术 首次将基于CNN的深度学习算法应用于MUSE-DWI,显著提高了图像质量,特别是在病变清晰度和信号质量方面 研究为回顾性研究,样本量较小(57例患者),且仅针对膀胱肿块,可能限制了结果的普遍性 评估深度学习重建技术在膀胱MRI中的图像质量 57例膀胱肿块患者 医学影像 膀胱癌 多路复用灵敏度编码扩散加权成像(MUSE-DWI) CNN MRI图像 57例膀胱肿块患者
6838 2025-03-16
Automatic Detection of Radiographic Alveolar Bone Loss in Bitewing and Periapical Intraoral Radiographs Using Deep Learning Technology: A Preliminary Evaluation
2025-Feb-27, Diagnostics (Basel, Switzerland)
研究论文 本研究评估了使用深度学习技术(Denti.AI)在口腔内X光片中自动检测放射学牙槽骨丢失(RBL)的诊断准确性 利用FDA批准的Denti.AI软件,通过卷积神经网络(CNNs)提高RBL检测的准确性,支持临床决策 尽管在根尖片上的表现稳健,但在咬翼片上的准确性有待进一步优化 评估Denti.AI在口腔内X光片中检测RBL的诊断准确性 39张口腔内X光片(22张根尖片和17张咬翼片),覆盖316个牙齿表面 数字病理 牙周病 深度学习 CNN 图像 39张口腔内X光片(22张根尖片和17张咬翼片),覆盖316个牙齿表面
6839 2025-03-16
Enhanced Multi-Class Breast Cancer Classification from Whole-Slide Histopathology Images Using a Proposed Deep Learning Model
2025-Feb-27, Diagnostics (Basel, Switzerland)
研究论文 本文提出了一种基于DenseNet121的深度学习模型,用于乳腺癌的检测和多类别分类 提出的模型在二分类和多分类任务中均达到了最先进的性能,特别是在区分良性和恶性肿瘤以及分类特定恶性肿瘤亚型方面表现优异 NA 提高乳腺癌从组织学照片中的准确分类,以辅助诊断和有效治疗计划 乳腺癌 数字病理学 乳腺癌 深度学习 DenseNet121 图像 使用BreakHis数据集中的全切片组织病理学图像
6840 2025-03-16
Integration of Hyperspectral Imaging and Deep Learning for Discrimination of Fumigated Lilies and Prediction of Quality Indicator Contents
2025-Feb-27, Foods (Basel, Switzerland)
研究论文 本文结合高光谱成像和深度学习技术,用于快速预测百合的营养质量,并区分硫磺熏蒸模式 首次将CLSTM模型与高光谱成像结合,用于百合营养质量的快速预测和硫磺熏蒸模式的区分 未提及样本量的具体数量,可能影响模型的泛化能力 提高百合产品的质量评估和营养完整性 百合 计算机视觉 NA 高光谱成像 CLSTM (卷积神经网络-长短期记忆网络) 图像 未提及具体数量
回到顶部