本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6921 | 2025-03-04 |
Automated Von Willebrand Factor Multimer Image Analysis for Improved Diagnosis and Classification of Von Willebrand Disease
2025-Mar-02, International journal of laboratory hematology
IF:2.2Q3
DOI:10.1111/ijlh.14455
PMID:40025642
|
研究论文 | 本文开发了一种基于深度学习的自动化图像分析流程,用于提高Von Willebrand因子多聚体模式分类的再现性和效率 | 首次使用YOLOv8深度学习模型对VWF多聚体模式进行分类,提高了分类的准确性和效率 | 模型在罕见亚型上的表现较低 | 改进Von Willebrand病的诊断和分类 | Von Willebrand因子多聚体图像 | 数字病理学 | Von Willebrand病 | 深度学习 | YOLOv8 | 图像 | 514张凝胶图像(6168个标记实例)用于训练,192张图像(2304个实例)用于验证,94张图像(1128个实例)用于测试 |
6922 | 2025-03-04 |
Assessing the prognostic impact of body composition phenotypes on surgical outcomes and survival in patients with spinal metastasis: a deep learning approach to preoperative CT analysis
2025-Mar-01, Journal of neurosurgery. Spine
DOI:10.3171/2024.8.SPINE24722
PMID:39705691
|
研究论文 | 本研究通过深度学习分析术前CT扫描,评估体成分表型对脊柱转移瘤手术患者预后和5年生存率的影响 | 首次使用深度学习管道分析术前CT扫描,识别肌肉和脂肪含量及组成,并将患者分为四种体成分表型组,揭示了体成分表型与手术结果及生存率的关系 | 样本量相对较小(102例),且为回顾性研究,可能存在选择偏倚 | 评估体成分表型对脊柱转移瘤手术患者预后和5年生存率的影响 | 接受脊柱转移瘤手术的患者 | 数字病理学 | 脊柱转移瘤 | 深度学习 | 深度学习管道 | CT图像 | 102例患者 |
6923 | 2025-03-04 |
Ethical and security challenges in AI for forensic genetics: From bias to adversarial attacks
2025-Mar, Forensic science international. Genetics
DOI:10.1016/j.fsigen.2025.103225
PMID:39874746
|
研究论文 | 本文探讨了人工智能在法医遗传学中应用的伦理和安全挑战,特别是偏见和对抗性攻击问题 | 通过模拟场景展示了AI方法在生物地理祖先预测和亲缘关系推断中的潜在误导性,强调了伦理和安全挑战 | 研究主要基于模拟场景,可能无法完全反映真实世界的复杂性 | 评估AI在法医遗传学中的应用,特别是其潜在的偏见和对抗性攻击问题 | 法医遗传学中的AI模型 | 法医遗传学 | NA | 深度学习, 机器学习 | NA | 模拟数据 | NA |
6924 | 2025-03-04 |
Deep learning for tibial plateau fracture detection and classification
2025-Mar-01, The Knee
DOI:10.1016/j.knee.2025.02.001
PMID:40023913
|
研究论文 | 本研究旨在开发深度学习模型,用于胫骨平台骨折的检测和根据Schatzker分类系统进行分类 | 首次开发用于胫骨平台骨折检测和Schatzker分类的计算机视觉模型 | 模型在骨折分类方面的准确性较低,Schatzker分类系统在常规X光片上的观察者间一致性较低 | 开发深度学习模型以检测和分类胫骨平台骨折 | 胫骨平台骨折患者的X光片 | 计算机视觉 | 骨折 | 深度学习 | CNN(GoogleNet和ResNet) | 图像 | 753名患者的1506张膝关节X光片,包括368例胫骨平台骨折和385例健康膝关节 |
6925 | 2025-03-04 |
Can artificial intelligence be the future solution to the enormous challenges and suffering caused by Schizophrenia?
2025-Feb-28, Schizophrenia (Heidelberg, Germany)
DOI:10.1038/s41537-025-00583-4
PMID:40021674
|
研究论文 | 本研究评估了人工智能(AI)在精神分裂症(SZ)的诊断、治疗和预后评估中的潜力,并探讨了AI在未来医学创新中的应用方向 | 通过整合多维生物标志物和患者的语言行为数据,AI提供了更客观和精确的诊断标准,并帮助制定个性化治疗计划,改善治疗效果 | AI在SZ管理中的角色必须作为辅助工具,临床判断和医护人员的关怀仍然至关重要 | 评估AI在精神分裂症诊断、治疗和预后评估中的潜力,并探讨其未来应用方向 | 精神分裂症患者 | 机器学习 | 精神分裂症 | 机器学习和深度学习 | NA | 多维生物标志物和语言行为数据 | NA |
6926 | 2025-03-04 |
Ligand-receptor interactions combined with histopathology for improved prognostic modeling in HPV-negative head and neck squamous cell carcinoma
2025-Feb-28, NPJ precision oncology
IF:6.8Q1
DOI:10.1038/s41698-025-00844-6
PMID:40021759
|
研究论文 | 本文通过结合配体-受体相互作用和组织病理学,改进了HPV阴性头颈部鳞状细胞癌的预后模型 | 结合BulkSignalR识别配体-受体相互作用,利用随机森林生存分析和LASSO惩罚Cox回归开发预后模型,并通过深度学习组织形态学分析进一步改进风险分层 | 研究样本仅限于TCGA-HNSC队列,可能无法完全代表所有HPV阴性头颈部鳞状细胞癌患者 | 改进HPV阴性头颈部鳞状细胞癌的预后模型,识别治疗靶点 | HPV阴性头颈部鳞状细胞癌患者 | 数字病理学 | 头颈部鳞状细胞癌 | BulkSignalR, 随机森林生存分析, LASSO惩罚Cox回归, 深度学习 | 随机森林, LASSO回归, 深度学习模型 | 多组学数据, HE染色全片图像 | 395例HPV阴性TCGA-HNSC队列患者 |
6927 | 2025-03-04 |
Using deep convolutional networks combined with signal processing techniques for accurate prediction of surface quality
2025-Feb-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-92114-5
PMID:40021768
|
研究论文 | 本文提出了一种结合深度学习技术和信号处理技术的框架,用于预测和分类铣削零件的表面粗糙度 | 创新点在于使用四种信号处理技术将声发射信号转换为2D图像,并结合多种卷积神经网络进行表面粗糙度的预测和分类 | 未提及具体局限性 | 研究目的是通过深度学习技术预测和分类铣削零件的表面粗糙度 | 铣削零件的表面粗糙度 | 计算机视觉 | NA | 声发射信号处理技术(SSPC、SSSC、SSSC*、RP) | VGG16、ResNet18、ShuffleNet、CNN-LSTM | 2D图像 | 未提及具体样本数量 |
6928 | 2025-03-04 |
A computational spectrometer for the visible, near, and mid-infrared enabled by a single-spinning film encoder
2025-Feb-28, Communications engineering
DOI:10.1038/s44172-025-00379-5
PMID:40021937
|
研究论文 | 本文提出了一种结合单旋转薄膜编码器(SSFE)和深度学习重建算法的计算光谱仪,覆盖可见光到中红外波长范围 | 通过粒子群优化(PSO)实现低相关性和高复杂度的光谱响应,展示了在可见光、近红外和中红外波长范围内的单峰和双峰分辨率 | NA | 开发一种低成本、原位、快速光谱分析的计算光谱仪 | 光谱仪的光谱响应和化学化合物的分类 | 机器学习和光学工程 | NA | 粒子群优化(PSO)和深度学习 | 深度学习算法 | 光谱数据 | 220种化学化合物 |
6929 | 2025-03-04 |
A deep learning and statistical shape modeling-based method for assessing intercondylar notch volume in anterior cruciate ligament reconstruction
2025-Feb-28, The Knee
DOI:10.1016/j.knee.2025.02.009
PMID:40022961
|
研究论文 | 本研究利用深度学习和统计形状建模技术,开发了一种评估前交叉韧带重建中髁间窝体积的方法 | 结合深度学习和统计形状建模技术,实现了对髁间窝的快速三维建模,并分析了其体积和形状的变异性 | 研究仅针对前交叉韧带损伤患者,未涉及其他膝关节疾病或健康人群 | 提高对髁间窝复杂三维解剖结构的理解,以优化前交叉韧带重建手术 | 前交叉韧带损伤患者的髁间窝 | 数字病理 | 前交叉韧带损伤 | 深度学习,统计形状建模(SSM) | SegResNet | 三维图像 | 前交叉韧带损伤患者的样本 |
6930 | 2025-03-04 |
Deep Learning-Assisted Diagnosis of Malignant Cerebral Edema Following Endovascular Thrombectomy
2025-Feb-28, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2025.02.021
PMID:40023742
|
研究论文 | 本研究旨在开发和验证一种基于深度学习辅助的诊断模型,利用血栓切除术后头部非对比计算机断层扫描中的高衰减成像标志物(HIM),以帮助放射科医生预测接受血管内血栓切除术(EVT)的患者是否会出现恶性脑水肿(MCE) | 首次将深度学习模型与HIM结合,用于预测EVT后的MCE,显著提高了放射科医生的诊断性能 | 研究样本量相对较小,且仅在单一机构进行,可能需要多中心研究进一步验证 | 开发并验证一种深度学习辅助的诊断模型,用于预测EVT后的MCE | 接受EVT治疗的急性缺血性卒中患者 | 数字病理学 | 心血管疾病 | 深度学习 | ResNet 50, ResNet 101, ResNeXt50_32×4d, ResNeXt101_32×8d, DenseNet 121 | 图像 | 271名患者(168名训练组,43名验证组,60名前瞻性内部测试组) |
6931 | 2025-03-04 |
AI-echocardiography: Current status and future direction
2025-Feb-21, Journal of cardiology
IF:2.5Q2
DOI:10.1016/j.jjcc.2025.02.005
PMID:40023671
|
综述 | 本文回顾了AI在超声心动图领域的当前应用、局限性以及未来发展方向 | 讨论了深度学习模型在超声心动图中的应用,包括无需人工标注的零样本预测和自动报告生成 | 当前AI技术在超声心动图中的应用仍存在局限性,需要进一步研究和验证 | 探讨AI技术在超声心动图中的应用及其在临床实践中的潜力 | 超声心动图数据 | 医学影像 | 心血管疾病 | 深度学习 | 深度学习模型 | 图像 | NA |
6932 | 2025-03-04 |
Improved Microbubble Tracking for Super-Resolution Ultrasound Localization Microscopy using a Bi-Directional Long Short-term Memory Neural Network
2025-Feb-14, bioRxiv : the preprint server for biology
DOI:10.1101/2025.02.10.637352
PMID:39990416
|
研究论文 | 本文提出了一种基于双向长短期记忆神经网络的深度学习微泡配对和跟踪方法,用于超分辨率超声定位显微镜 | 该方法整合了多参数微泡特征,以实现更稳健和准确的微泡配对和跟踪 | 方法在模拟数据集、组织模拟流动模型以及小鼠和大鼠脑部进行了验证,但未提及在人类临床数据上的应用 | 提高超分辨率超声定位显微镜中微泡跟踪的准确性和鲁棒性 | 微泡(MBs) | 医学影像 | NA | 超分辨率超声定位显微镜(ULM) | 双向长短期记忆神经网络(Bi-Directional LSTM) | 超声图像 | 模拟数据集、组织模拟流动模型、小鼠和大鼠脑部 |
6933 | 2025-03-04 |
Validation of ten federated learning strategies for multi-contrast image-to-image MRI data synthesis from heterogeneous sources
2025-Feb-11, bioRxiv : the preprint server for biology
DOI:10.1101/2025.02.09.637305
PMID:39990397
|
研究论文 | 本文验证了十种联邦学习策略在多对比度MRI图像合成中的应用,特别是在处理来自不同机构的异质数据时 | 提出了一种新的聚合策略FedBAdam,结合了两种最先进方法的优势,通过引入动量并跳过批量归一化层来优化模型参数 | 研究主要关注脑部扫描,未涉及其他类型的医学影像数据 | 验证联邦学习策略在多对比度MRI图像合成中的有效性,特别是在处理异质数据时的性能 | 健康和肿瘤性脑部扫描数据 | 医学影像 | 脑部肿瘤 | 联邦学习(FL) | 深度学习模型 | MRI图像 | 来自五个不同机构的脑部扫描数据 |
6934 | 2025-03-04 |
Assessing Genotype-Phenotype Correlations with Deep Learning in Colorectal Cancer: A Multi-Centric Study
2025-Feb-08, medRxiv : the preprint server for health sciences
DOI:10.1101/2025.02.04.25321660
PMID:39973981
|
研究论文 | 本研究利用深度学习技术从结直肠癌的H&E切片中预测多种遗传生物标志物,并在多中心数据集中验证了模型的性能 | 开发了一种多目标Transformer模型,能够从病理切片中预测多种遗传改变,超越了传统的单目标模型 | 模型的预测能力主要与微卫星不稳定性(MSI)表型相关,其他生物标志物的预测能力有限 | 评估深度学习在结直肠癌中预测基因型-表型相关性的能力 | 结直肠癌患者的H&E切片 | 数字病理学 | 结直肠癌 | 深度学习 | Transformer | 图像 | 1,376名患者(主要数据集)和536名患者(验证数据集) |
6935 | 2025-03-04 |
Assessment of the stability of intracranial aneurysms using a deep learning model based on computed tomography angiography
2025-Feb, La Radiologia medica
DOI:10.1007/s11547-024-01939-z
PMID:39666223
|
研究论文 | 本研究旨在构建一个基于深度学习的模型,通过计算机断层扫描血管造影(CTA)图像识别不稳定的颅内动脉瘤 | 创新点在于结合临床、形态学和深度学习特征,构建了一个基于卷积神经网络(CNN)的模型,用于预测颅内动脉瘤的稳定性 | 研究的局限性在于样本量相对较小,且外部验证集的样本来自单一医院,可能影响模型的泛化能力 | 研究目的是评估颅内动脉瘤的稳定性,以支持临床决策 | 研究对象为1041名患者的1227个颅内动脉瘤 | 计算机视觉 | 颅内动脉瘤 | 计算机断层扫描血管造影(CTA) | 卷积神经网络(CNN) | 图像 | 1041名患者的1227个颅内动脉瘤,其中833名患者的991个动脉瘤用于训练,208名患者的236个动脉瘤用于内部验证,197名患者的229个动脉瘤用于外部验证 |
6936 | 2025-03-04 |
Single Cell Spatial Transcriptomics Reveals Immunotherapy-Driven Bone Marrow Niche Remodeling in AML
2025-Jan-27, bioRxiv : the preprint server for biology
DOI:10.1101/2025.01.24.634753
PMID:39975227
|
研究论文 | 本文通过单细胞空间转录组学技术,研究了免疫治疗对急性髓性白血病患者骨髓微环境的重塑作用 | 结合单细胞RNA测序数据和单细胞分辨率空间转录组数据,克服了测序深度限制,揭示了免疫治疗后白血病细胞与免疫细胞之间的空间相互作用 | 样本量有限,仅针对特定治疗方案的患者进行研究 | 研究免疫治疗对急性髓性白血病患者骨髓微环境的影响 | 难治性或复发性急性髓性白血病患者 | 数字病理学 | 急性髓性白血病 | 单细胞RNA测序,空间转录组学 | 深度学习模型 | 单细胞RNA测序数据,空间转录组数据 | 难治性或复发性急性髓性白血病患者样本 |
6937 | 2025-03-04 |
A case for the use of deep learning algorithms for individual and population level assessments of mental health disorders: Predicting depression among China's elderly
2025-Jan-15, Journal of affective disorders
IF:4.9Q1
DOI:10.1016/j.jad.2024.09.147
PMID:39321977
|
研究论文 | 本研究利用机器学习方法分析中国老年人群的抑郁风险因素,从整体和个体层面预测抑郁 | 使用机器学习算法在大规模代表性老年数据库中预测抑郁风险因素,提供个体层面的可靠诊断可能性 | 需要进一步研究结合专业临床输入以推进该领域 | 预测中国老年人群的抑郁风险因素,支持临床医生识别影响患者抑郁的最重要因素 | 中国老年人群 | 机器学习 | 老年疾病 | 机器学习算法 | NA | 调查数据 | 来自中国健康与养老追踪调查(CHARLS)第四波的参与者 |
6938 | 2025-03-04 |
AI-luminating Artificial Intelligence in Inflammatory Bowel Diseases: A Narrative Review on the Role of AI in Endoscopy, Histology, and Imaging for IBD
2024-12-05, Inflammatory bowel diseases
IF:4.5Q1
DOI:10.1093/ibd/izae030
PMID:38452040
|
综述 | 本文综述了人工智能(AI)在炎症性肠病(IBD)内窥镜、组织学和影像学中的应用,探讨了AI在IBD检测、诊断、表征、表型分析和预后中的潜力 | 本文首次系统性地回顾了AI在IBD内窥镜、组织学和影像学中的应用,并指出了现有研究的局限性和知识空白 | 现有文献存在固有的局限性和知识空白,需要进一步研究以解决这些问题,使AI能够成为IBD的主流临床工具 | 探讨AI在IBD内窥镜、组织学和影像学中的应用,以提升诊断效率和临床决策 | 炎症性肠病(IBD) | 数字病理学 | 炎症性肠病 | 深度学习、放射组学 | NA | 图像 | NA |
6939 | 2025-03-04 |
Estimating the distribution of numerosity and non-numerical visual magnitudes in natural scenes using computer vision
2024-Dec-03, Psychological research
DOI:10.1007/s00426-024-02064-2
PMID:39625570
|
研究论文 | 本文利用计算机视觉算法设计并实现了一个原始流程,用于估计包含数千张日常生活场景中物体图像的大规模数据集中数量和非数量视觉幅度的分布 | 利用最新的计算机视觉算法,设计了一个能够估计自然场景中数量和非数量视觉幅度分布的流程,揭示了不同数量出现的频率遵循幂律分布,并展示了数量与连续幅度之间的相关性结构在不同数据集和场景类型中的稳定性 | 神经网络模型通常使用合成数据集进行训练,这些数据集可能无法准确反映自然环境的统计结构 | 研究自然场景中数量和非数量视觉幅度的分布,以理解非数量视觉线索对数量判断的影响 | 包含数千张日常生活场景中物体图像的大规模数据集 | 计算机视觉 | NA | 计算机视觉算法 | 神经网络 | 图像 | 数千张日常生活场景中的物体图像 |
6940 | 2025-03-04 |
Identification of diabetic retinopathy classification using machine learning algorithms on clinical data and optical coherence tomography angiography
2024-Oct, Eye (London, England)
DOI:10.1038/s41433-024-03173-3
PMID:38871934
|
研究论文 | 本研究应用机器学习算法,结合临床数据和光学相干断层扫描血管成像(OCTA)进行糖尿病视网膜病变(DR)的多分类 | 创新点在于结合了临床数据和OCTA参数,使用多种机器学习算法进行DR的多分类,并进行了独立的外部验证 | 研究样本量相对较小,仅包括203名糖尿病患者用于模型建立和169名用于外部验证 | 研究目的是通过机器学习算法提高糖尿病视网膜病变的分类准确性,以辅助筛查、转诊和管理DR患者 | 研究对象为203名糖尿病患者的临床数据和OCTA参数 | 机器学习 | 糖尿病视网膜病变 | 光学相干断层扫描血管成像(OCTA) | 随机森林、梯度提升机(GBM)、深度学习、逻辑回归 | 临床数据和OCTA图像 | 203名糖尿病患者(203只眼)用于模型建立,169名糖尿病患者(169只眼)用于外部验证 |