本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6941 | 2025-02-11 |
Multi-dimensional perceptual recognition of tourist destination using deep learning model and geographic information system
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0318846
PMID:39919101
|
研究论文 | 本研究提出了一种结合深度学习模型和地理信息系统(GIS)的多维度旅游目的地感知识别策略,以提高感知识别的准确性和完整性 | 通过整合改进的Inception V3模型、带多头注意力的双向长短期记忆网络(BiLSTM)模型和GIS技术,实现了对旅游目的地感知的多维度精确识别,识别准确率超过97% | 研究主要集中在中国大同的游客感知,可能在其他地区的适用性需要进一步验证 | 提高旅游目的地感知识别的准确性和完整性,支持目的地管理决策和旅游推荐 | 旅游目的地的感知识别,特别是内容感知、情感感知以及时空感知 | 自然语言处理 | NA | 深度学习、地理信息系统(GIS) | 改进的Inception V3模型、双向长短期记忆网络(BiLSTM)模型 | 图像、文本、时空信息 | NA |
6942 | 2025-02-11 |
Advanced retinal disease detection from OCT images using a hybrid squeeze and excitation enhanced model
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0318657
PMID:39919140
|
研究论文 | 本文提出了一种混合SE增强模型,用于从OCT图像中检测视网膜疾病,包括糖尿病性黄斑水肿、Drusen和脉络膜新生血管 | 结合了SE块与EfficientNetB0和Xception架构,提高了模型的效率和分类性能,能够更准确地检测视网膜疾病 | 依赖于特定数据集(UCSD和Duke的OCT数据集),可能在其他数据集上的泛化能力有限 | 开发一种基于人工智能和深度学习的模型,用于从OCT图像中准确检测视网膜疾病 | OCT图像中的视网膜疾病,包括糖尿病性黄斑水肿、Drusen和脉络膜新生血管 | 计算机视觉 | 视网膜疾病 | 深度学习 | SE-Enhanced Hybrid Model(结合EfficientNetB0和Xception) | 图像 | UCSD和Duke的OCT数据集 |
6943 | 2025-02-11 |
RETRACTED: Lung cancer diagnosis of CT images using metaheuristics and deep learning
2024-Apr, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine
DOI:10.1177/09544119221090725
PMID:35445619
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
6944 | 2025-02-11 |
RETRACTION NOTICE: Lung cancer diagnosis of CT images using metaheuristics and deep learning
2024-Apr, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine
DOI:10.1177/09544119221134231
PMID:36237147
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
6945 | 2025-02-11 |
Self-Supervised Learning for Improved Optical Coherence Tomography Detection of Macular Telangiectasia Type 2
2024-Mar-01, JAMA ophthalmology
IF:7.8Q1
DOI:10.1001/jamaophthalmol.2023.6454
PMID:38329740
|
研究论文 | 本文提出了一种自监督学习方法,用于在有限标注数据的情况下,通过光学相干断层扫描(OCT)自动分类2型黄斑毛细血管扩张症(MacTel) | 使用自监督学习方法在有限标注数据的情况下提高了MacTel的自动分类准确性,并展示了其在其他罕见疾病中的潜在应用 | 需要进一步研究以验证该方法在其他罕见疾病中的适用性 | 开发一种自监督学习方法,用于在有限标注数据的情况下自动分类MacTel | 2型黄斑毛细血管扩张症(MacTel)患者和非MacTel患者的OCT图像 | 计算机视觉 | 黄斑毛细血管扩张症 | 光学相干断层扫描(OCT) | ResNet18, ResNet50 | 图像 | 2636张OCT扫描图像来自780名MacTel患者和131名非MacTel患者,以及2564张来自1769名非MacTel患者的OCT扫描图像 |
6946 | 2025-02-11 |
Utilisation of ChatGPT and other Artificial Intelligence tools among medical faculty in Uganda: a cross-sectional study
2024, MedEdPublish (2016)
DOI:10.12688/mep.20554.2
PMID:39911314
|
研究论文 | 本研究评估了乌干达医学教师对ChatGPT及其他人工智能工具的使用情况 | 首次在乌干达医学教师中调查ChatGPT及其他AI工具的使用情况,揭示了不同年龄段教师的使用差异 | 研究样本仅限于乌干达四所公立大学的医学教师,可能无法代表其他地区或国家的使用情况 | 评估乌干达医学教师对ChatGPT及其他AI工具的使用情况,探讨AI在医学教育中的应用潜力 | 乌干达四所公立大学的医学教师 | 自然语言处理 | NA | ChatGPT, Quill Bot | 深度学习模型 | 问卷调查数据 | 224名医学教师 |
6947 | 2025-02-09 |
Estimating baselines of Raman spectra based on transformer and manually annotated data
2025-Apr-05, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
DOI:10.1016/j.saa.2024.125679
PMID:39733708
|
研究论文 | 本文提出了一种基于Transformer和手动标注数据的拉曼光谱基线估计方法 | 设计了一种针对拉曼光谱数据的一维Transformer模型(1dTrans),并在基线估计任务中表现优于传统的卷积神经网络(CNN)、ResUNet和三种参数化方法 | 手动标注数据的过程可能耗时且依赖于参数调整,模型的泛化能力未在更多材料上进行验证 | 改进拉曼光谱的基线校正方法,以提高定量分析的准确性 | 拉曼光谱数据 | 机器学习 | NA | 拉曼光谱分析 | Transformer, CNN, ResUNet | 光谱数据 | 八种不同生物材料的光谱数据 |
6948 | 2025-02-10 |
Lightweight deep learning algorithm for real-time wheat flour quality detection via NIR spectroscopy
2025-Apr-05, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
DOI:10.1016/j.saa.2024.125653
PMID:39733712
|
研究论文 | 本研究提出了一种轻量级卷积神经网络,用于通过近红外光谱实时监测小麦粉质量 | 结合了Ghost瓶颈、外部注意力模块和Kolmogorov-Arnold网络,以增强特征提取并提高预测准确性 | 未提及模型在大规模实际应用中的具体表现和潜在问题 | 开发一种高效、非破坏性的小麦粉质量实时监测工具 | 小麦粉的质量参数(蛋白质和水分含量) | 机器学习 | NA | 近红外光谱 | 卷积神经网络(CNN) | 光谱数据 | 未明确提及具体样本数量,但涉及多样本测试 |
6949 | 2025-02-10 |
Determination and visualization of moisture content in Camellia oleifera seeds rapidly based on hyperspectral imaging combined with deep learning
2025-Apr-05, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
DOI:10.1016/j.saa.2024.125676
PMID:39742624
|
研究论文 | 本研究探讨了利用可见近红外高光谱成像(VNIR-HSI)结合深度学习(DL)方法快速检测油茶籽水分含量的可行性 | 提出了一种利用粒子群优化(PSO)搜索卷积神经网络回归(CNNR)模型最优超参数的方法,并比较了多种模型的预测性能,最终确定了最优混合预测模型PSO-CNN-SVR | NA | 探讨利用高光谱成像和深度学习技术实现油茶籽水分含量的无损检测和可视化 | 油茶籽 | 计算机视觉 | NA | 可见近红外高光谱成像(VNIR-HSI) | 卷积神经网络回归(CNNR)、支持向量机回归(SVR)、AlexNet | 光谱数据 | NA |
6950 | 2025-02-10 |
On the analysis of adapting deep learning methods to hyperspectral imaging. Use case for WEEE recycling and dataset
2025-Apr-05, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
DOI:10.1016/j.saa.2024.125665
PMID:39746253
|
研究论文 | 本文评估了在深度学习架构中结合不同空间和光谱特征对高光谱图像分割的影响,并探讨了从RGB图像预训练模型到高光谱领域的知识迁移 | 提出了不同架构配置,评估了光谱和空间信息对模型性能、能耗和推理时间的影响,并公开了Tecnalia WEEE高光谱数据集 | 未对所有光谱波长进行优化,且从RGB领域迁移的预训练模型性能较低、能耗较高、推理时间较长 | 研究高光谱图像分割中空间和光谱信息对深度学习模型性能的影响 | 高光谱图像 | 计算机视觉 | NA | 深度学习 | 深度学习架构 | 高光谱图像 | Tecnalia WEEE高光谱数据集,包含铜、黄铜、铝、不锈钢和白铜等非铁金属废料 |
6951 | 2025-02-10 |
Rapid identification of horse oil adulteration based on deep learning infrared spectroscopy detection method
2025-Apr-05, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
DOI:10.1016/j.saa.2024.125604
PMID:39756131
|
研究论文 | 本研究提出了一种基于深度学习和红外光谱技术的快速检测马油掺假的方法 | 首次将红外光谱与深度学习结合用于马油掺假的快速检测,展示了深度学习与红外光谱在掺假检测领域结合的重要性 | 研究中仅使用了四种类型的样本(马油、黄油、羊油和猪油)进行掺假检测,可能无法涵盖所有可能的掺假物质 | 建立一种快速识别马油掺假的方法,以应对市场上马油掺假问题 | 马油及其掺假样本(黄油、羊油、猪油) | 机器学习 | NA | 红外光谱技术 | ResNet | 红外光谱数据 | 四种类型的样本(马油、黄油、羊油、猪油),每种掺假比例(5%, 10%, 20%, 30%, 40%, 50%) |
6952 | 2025-02-10 |
Enhancing thin slice 3D T2-weighted prostate MRI with super-resolution deep learning reconstruction: Impact on image quality and PI-RADS assessment
2025-Apr, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2024.110308
PMID:39667642
|
研究论文 | 本研究评估了超分辨率深度学习重建(SR-DLR)在提高薄层3D T2加权成像(T2WI)图像质量和前列腺影像报告与数据系统(PI-RADS)评估中的有效性 | 使用SR-DLR技术在不延长MRI采集时间的情况下提高图像质量,并评估其对PI-RADS评分的影响 | 样本量较小(28名患者),且为回顾性研究 | 评估SR-DLR在提高前列腺MRI图像质量和PI-RADS评分中的有效性 | 前列腺MRI图像 | 医学影像 | 前列腺癌 | 超分辨率深度学习重建(SR-DLR) | 深度学习模型 | MRI图像 | 28名男性患者(年龄范围:47-88岁;平均年龄:70.8岁) |
6953 | 2025-02-10 |
A lightweight adaptive spatial channel attention efficient net B3 based generative adversarial network approach for MR image reconstruction from under sampled data
2025-Apr, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2024.110281
PMID:39672285
|
研究论文 | 本文提出了一种基于轻量级自适应空间通道注意力EfficientNet B3的生成对抗网络(ASCA-EffNet GAN),用于从欠采样的k空间数据中快速高质量地重建MR图像 | 提出了一种结合自适应空间通道注意力机制和EfficientNet B3的生成对抗网络,用于MR图像重建,有效捕捉空间和通道特征,提升重建质量 | 未提及具体的数据集大小和多样性,可能影响模型的泛化能力 | 加速MR图像采集并提高重建质量,适用于临床快速诊断 | 欠采样的k空间数据 | 计算机视觉 | NA | 压缩感知MRI(CS-MRI) | 生成对抗网络(GAN),U-net生成器,ResNet解码器 | MR图像 | 未提及具体样本数量 |
6954 | 2025-02-10 |
Conditional generative diffusion deep learning for accelerated diffusion tensor and kurtosis imaging
2025-Apr, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2024.110309
PMID:39675686
|
研究论文 | 本研究开发了DiffDL,一种生成扩散概率模型,旨在从减少的扩散加权图像(DWI)集中生成高质量的扩散张量成像(DTI)和扩散峰度成像(DKI)指标 | DiffDL模型通过生成扩散概率模型解决了扩散MRI数据采集时间过长的问题,同时保持了指标的准确性 | 未来研究需要优化计算需求,并在临床队列和标准MRI扫描仪上验证模型 | 开发一种生成扩散概率模型以减少扩散MRI数据采集时间并保持指标准确性 | 扩散加权图像(DWI) | 计算机视觉 | NA | 扩散张量成像(DTI)和扩散峰度成像(DKI) | UNet | 图像 | 300训练/验证对象和50测试对象 |
6955 | 2025-02-10 |
Predicting molecular subtypes of breast cancer based on multi-parametric MRI dataset using deep learning method
2025-Apr, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2024.110305
PMID:39681144
|
研究论文 | 本研究开发了一种基于多参数MRI的深度学习模型,用于预测乳腺癌的分子亚型 | 使用五种类型的术前MRI图像,通过集成学习方法融合五个基础模型的输出,构建了一个多参数MRI模型,用于预测乳腺癌的分子亚型 | 研究样本量相对较小,且为回顾性研究,可能存在选择偏差 | 开发一种基于多参数MRI的模型,用于预测乳腺癌的分子亚型 | 325例经病理证实的乳腺癌患者的临床数据和五种MRI图像 | 数字病理 | 乳腺癌 | 多参数MRI成像 | ResNeXt50 | 图像 | 325例乳腺癌患者(260例训练集,65例测试集) |
6956 | 2024-12-28 |
Reliability of post-contrast deep learning-based highly accelerated cardiac cine MRI for the assessment of ventricular function
2025-Apr, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2024.110313
PMID:39708928
|
研究论文 | 本研究评估了基于深度学习的加速心脏电影MRI在对比剂注射前后的等效性,用于评估心室功能 | 首次在临床环境中评估了对比剂注射前后基于深度学习的加速心脏电影MRI的图像质量和心室功能量化等效性 | 样本量较小,仅30名患者,且仅在1.5T扫描仪上进行 | 评估对比剂注射前后基于深度学习的加速心脏电影MRI在图像质量和心室功能量化上的等效性 | 30名患者(20名男性,平均年龄53.7±17.8岁) | 医学影像 | 心血管疾病 | 心脏磁共振成像(MRI) | 深度学习 | 图像 | 30名患者 |
6957 | 2025-01-02 |
Deep learning radiomics nomograms predict Isocitrate dehydrogenase (IDH) genotypes in brain glioma: A multicenter study
2025-Apr, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2024.110314
PMID:39708927
|
研究论文 | 本研究探讨了深度学习放射组学列线图(DLRN)在预测脑胶质瘤IDH基因型中的可行性 | 开发了一种结合深度学习特征、放射组学特征和临床特征的混合模型,用于非侵入性预测胶质瘤的IDH突变状态 | 研究样本量相对较小,且仅基于T2图像进行预测 | 探索DLRN在预测脑胶质瘤IDH基因型中的可行性 | 402名来自两个独立中心的脑胶质瘤患者 | 数字病理学 | 脑胶质瘤 | 深度学习,放射组学 | 混合模型(深度学习特征、放射组学特征、临床特征) | 图像(T2图像) | 402名脑胶质瘤患者(训练队列239名,内部验证队列103名,外部验证队列60名) |
6958 | 2025-02-10 |
Comparison of conventional diffusion-weighted imaging and multiplexed sensitivity-encoding combined with deep learning-based reconstruction in breast magnetic resonance imaging
2025-Apr, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2024.110316
PMID:39716684
|
研究论文 | 本研究比较了传统扩散加权成像(DWI)与结合深度学习的多重灵敏度编码(MUSE-DLR)在乳腺磁共振成像中的应用 | 首次将深度学习重建技术应用于MUSE数据,以提升乳腺MRI图像质量 | 样本量较小,仅包括51名女性参与者 | 评估MUSE结合深度学习重建在乳腺成像中的可行性 | 接受乳腺磁共振成像的女性参与者 | 医学影像 | 乳腺癌 | 磁共振成像(MRI),扩散加权成像(DWI),多重灵敏度编码(MUSE) | 深度学习重建(DLR) | 图像 | 51名女性参与者 |
6959 | 2025-01-11 |
Application of MRI-based tumor heterogeneity analysis for identification and pathologic staging of breast phyllodes tumors
2025-Apr, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2025.110325
PMID:39788394
|
研究论文 | 本文探讨了基于MRI的影像组学和深度学习模型在乳腺叶状肿瘤识别和分类中的应用价值 | 结合传统影像组学特征、亚区域影像组学特征和深度学习特征,构建了融合模型,并验证了其在乳腺叶状肿瘤分类中的最佳诊断效能和临床效益 | 研究样本量较小(77例),且为回顾性分析,可能存在选择偏倚 | 探索MRI影像组学和深度学习在乳腺叶状肿瘤识别和病理分期中的应用价值 | 乳腺叶状肿瘤和纤维腺瘤患者 | 数字病理 | 乳腺癌 | MRI成像 | 融合模型(传统影像组学、亚区域影像组学和深度学习) | MRI图像 | 77例经病理检查确诊的乳腺叶状肿瘤和纤维腺瘤患者 |
6960 | 2025-01-14 |
Cooking loss estimation of semispinalis capitis muscle of pork butt using a deep neural network on hyperspectral data
2025-Apr, Meat science
IF:5.7Q1
DOI:10.1016/j.meatsci.2025.109754
PMID:39799874
|
研究论文 | 本研究评估了基于深度学习的模型在预测猪颈肉半棘肌烹饪损失方面的性能,使用了死后24小时采集的高光谱图像 | 使用深度学习模型和高光谱图像预测猪颈肉半棘肌的烹饪损失,并通过数据增强克服小样本问题 | 分类准确率随着等级数量的增加而降低 | 预测猪颈肉半棘肌的烹饪损失 | 猪颈肉半棘肌 | 计算机视觉 | NA | 高光谱成像 | 深度学习模型 | 图像 | 70个猪颈肉样本 |