本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6961 | 2025-03-11 |
VASCilia (Vision Analysis StereoCilia): A Napari Plugin for Deep Learning-Based 3D Analysis of Cochlear Hair Cell Stereocilia Bundles
2025-Feb-15, bioRxiv : the preprint server for biology
DOI:10.1101/2024.06.17.599381
PMID:38948743
|
研究论文 | 本文介绍了VASCilia,一个基于深度学习的Napari插件,用于自动化分析耳蜗毛细胞立体纤毛束的3D共聚焦显微镜数据集 | VASCilia是首个专门用于耳蜗毛细胞立体纤毛束3D分析的深度学习工具,提供了五种深度学习模型和自动化计算工具,支持高通量图像定量分析 | NA | 开发一个自动化工具,用于分析耳蜗毛细胞立体纤毛束的3D形态,以促进耳蜗毛细胞发育和功能的研究 | 耳蜗毛细胞立体纤毛束 | 计算机视觉 | NA | 深度学习 | Z-Focus Tracker (ZFT), PCPAlignNet, 分割模型, 分类工具 | 3D共聚焦显微镜图像 | 55个3D图像堆栈,包含502个内毛细胞和1,703个外毛细胞束的3D注释 |
6962 | 2025-03-11 |
Global Deep Forecasting with Patient-Specific Pharmacokinetics
2025-Feb-12, ArXiv
PMID:37965077
|
研究论文 | 本文提出了一种新颖的混合全局-局部架构和药代动力学编码器,用于预测医疗时间序列数据,特别是在血糖预测任务中展示了其有效性 | 提出了一种混合全局-局部架构和药代动力学编码器,能够为深度学习模型提供患者特定的治疗效果信息 | 未明确提及具体局限性 | 提高医疗时间序列数据预测的准确性,特别是在患者特定药代动力学影响下的血糖预测 | 医疗时间序列数据,特别是血糖数据 | 机器学习 | 糖尿病 | 深度学习 | 混合全局-局部架构 | 时间序列数据 | 模拟数据和真实世界数据 |
6963 | 2025-03-11 |
gRNAde: A Geometric Deep Learning Pipeline for 3D RNA Inverse Design
2025, Methods in molecular biology (Clifton, N.J.)
DOI:10.1007/978-1-0716-4079-1_8
PMID:39312140
|
研究论文 | 本文介绍了一种名为gRNAde的几何深度学习管道,用于3D RNA逆向设计,该管道考虑了RNA的3D结构和动态性 | gRNAde采用图神经网络和SE(3)等变编码-解码框架,首次在RNA设计中明确考虑3D几何和构象多样性 | NA | 开发一种能够基于RNA的3D骨架结构设计RNA序列的计算工具 | RNA的3D骨架结构 | 机器学习 | NA | 几何深度学习 | 图神经网络 | 3D RNA骨架结构 | 来自PDB的现有RNA结构,包括核糖开关、适配体和核酶 |
6964 | 2025-03-11 |
Comparison of Vendor-Pretrained and Custom-Trained Deep Learning Segmentation Models for Head-and-Neck, Breast, and Prostate Cancers
2024-Dec-18, Diagnostics (Basel, Switzerland)
DOI:10.3390/diagnostics14242851
PMID:39767212
|
研究论文 | 本文评估了本地患者和临床特征对商业深度学习分割模型在头颈、乳腺和前列腺癌症中性能的影响 | 比较了供应商预训练和自定义训练的深度学习分割模型,并展示了自定义模型在多个器官风险区域(OARs)上的显著改进 | 研究样本量相对较小,且仅针对头颈、乳腺和前列腺癌症 | 评估本地数据和临床特征对商业深度学习分割模型性能的影响 | 头颈、乳腺和前列腺癌症患者 | 数字病理 | 头颈癌、乳腺癌、前列腺癌 | 深度学习分割模型 | 深度学习模型 | CT扫描图像 | 210名患者(53名头颈癌、49名左乳腺癌、55名右乳腺癌、53名前列腺癌) |
6965 | 2025-03-11 |
Sampling Conformational Ensembles of Highly Dynamic Proteins via Generative Deep Learning
2024-Dec-09, bioRxiv : the preprint server for biology
DOI:10.1101/2024.05.05.592587
PMID:38979147
|
研究论文 | 本文介绍了一种基于深度学习的模型ICoN,用于从分子动力学模拟数据中学习蛋白质构象变化的物理原理,并应用于高度动态的蛋白质构象采样 | 提出了一种新的深度学习模型ICoN,能够从分子动力学模拟数据中学习蛋白质构象变化的物理原理,并生成新的合成构象,揭示了实验未观察到的原子级细节 | 模型的训练依赖于分子动力学模拟数据,可能受限于模拟的准确性和计算资源 | 研究高度动态蛋白质的构象集合,以理解其功能调控和疾病相关聚集 | 高度动态的蛋白质,特别是内在无序蛋白质(IDPs)和淀粉样β(Aβ42)单体 | 机器学习 | NA | 分子动力学模拟(MD) | 深度学习模型(ICoN) | 分子动力学模拟数据 | NA |
6966 | 2025-03-11 |
Sampling Conformational Ensembles of Highly Dynamic Proteins via Generative Deep Learning
2024-Jun-28, Research square
DOI:10.21203/rs.3.rs-4301803/v1
PMID:38978607
|
研究论文 | 本文开发了一种基于无监督深度学习的模型ICoN,用于从分子动力学模拟数据中学习蛋白质构象变化的物理原理,并通过插值数据点快速识别具有复杂和大规模侧链和骨架排列的新合成构象 | 提出了ICoN模型,能够从分子动力学模拟数据中学习蛋白质构象变化的物理原理,并生成新的合成构象,揭示了实验发现中未包含的重要原子细节 | 方法的普适性依赖于可用训练数据的质量和数量,且需要进一步的实验验证来确认生成构象的生物学相关性 | 研究蛋白质构象集合,特别是高度动态蛋白质的构象变化,以理解其功能调控和疾病相关聚集 | 高度动态的淀粉样β(Aβ42)单体 | 机器学习 | NA | 分子动力学(MD)模拟 | ICoN(Internal Coordinate Net) | 分子动力学模拟数据 | NA |
6967 | 2025-03-11 |
A novel deep learning model for diabetic retinopathy detection in retinal fundus images using pre-trained CNN and HWBLSTM
2024-Feb-19, Journal of biomolecular structure & dynamics
IF:2.7Q2
DOI:10.1080/07391102.2024.2314269
PMID:38373067
|
研究论文 | 本文提出了一种新的深度学习模型,用于通过视网膜眼底图像检测糖尿病视网膜病变,结合了预训练的CNN和HWBLSTM | 创新点在于结合了He加权双向长短期记忆网络(HWBLSTM)和有效的迁移学习技术,用于从视网膜眼底图像中检测糖尿病视网膜病变 | 未明确提及研究的局限性 | 研究目的是开发一种深度学习方法来准确检测和分类糖尿病视网膜病变 | 研究对象是糖尿病视网膜病变患者的视网膜眼底图像 | 计算机视觉 | 糖尿病视网膜病变 | 深度学习、迁移学习、图像预处理、图像分割、特征提取、降维 | CNN、HWBLSTM | 图像 | 使用了APTOS和MESSIDOR数据集 |
6968 | 2025-03-11 |
Adapting physics-informed neural networks to improve ODE optimization in mosquito population dynamics
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0315762
PMID:39715201
|
研究论文 | 本文提出了一种改进的物理信息神经网络(PINN)框架,用于解决蚊子种群动态建模中的ODE优化问题 | 提出了一种改进的PINN框架,解决了梯度不平衡和刚性ODE问题,并通过逐步扩展训练时间域来解决时间因果关系问题 | 当前PINN框架在现实世界的ODE系统中还不够成熟,尤其是在具有极端多尺度行为的系统中 | 改进物理信息神经网络在ODE系统中的应用,特别是用于蚊子种群动态建模 | 蚊子种群动态建模 | 机器学习 | NA | 物理信息神经网络(PINN) | PINN | 模拟数据 | NA |
6969 | 2025-03-11 |
Application of deep learning models for detection of subdural hematoma: a systematic review and meta-analysis
2023-10, Journal of neurointerventional surgery
IF:4.5Q1
DOI:10.1136/jnis-2023-020218
PMID:37258226
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
6970 | 2025-03-11 |
Response to 'Application of deep learning models for detection of subdural hematoma: a systematic review and meta-analysis'
2023-10, Journal of neurointerventional surgery
IF:4.5Q1
DOI:10.1136/jnis-2023-020804
PMID:37714539
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
6971 | 2025-03-11 |
Letter re: Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review: Label-free diagnostic technique to differentiate cancer cells from healthy cells
2022-09, European journal of cancer (Oxford, England : 1990)
DOI:10.1016/j.ejca.2022.04.032
PMID:35717368
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
6972 | 2025-03-11 |
Response to letter entitled: Re: Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review
2022-09, European journal of cancer (Oxford, England : 1990)
DOI:10.1016/j.ejca.2022.06.001
PMID:35781181
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
6973 | 2025-03-11 |
Artificial Intelligence-Enabled Analysis of Public Attitudes on Facebook and Twitter Toward COVID-19 Vaccines in the United Kingdom and the United States: Observational Study
2021-04-05, Journal of medical Internet research
IF:5.8Q1
DOI:10.2196/26627
PMID:33724919
|
研究论文 | 本研究开发并应用了一种基于人工智能的方法,分析英国和美国社交媒体上关于COVID-19疫苗的公众情绪,以更好地理解公众对COVID-19疫苗的态度和担忧 | 利用自然语言处理和深度学习技术,对社交媒体数据进行情感分析和主题识别,以实时评估公众对COVID-19疫苗的信心和信任 | 研究依赖于社交媒体数据,可能无法完全代表所有公众的意见,且数据时间范围有限 | 分析英国和美国公众对COVID-19疫苗的态度和担忧,以指导教育和政策干预 | 英国和美国的社交媒体用户 | 自然语言处理 | COVID-19 | 自然语言处理,深度学习 | 深度学习模型 | 文本 | 超过300,000条社交媒体帖子,包括英国的23,571条Facebook帖子和40,268条推文,美国的144,864条Facebook帖子和98,385条推文 |
6974 | 2025-03-11 |
Re: An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening
2020-01-01, Journal of the National Cancer Institute
DOI:10.1093/jnci/djz115
PMID:31187115
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
6975 | 2025-03-11 |
An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening
2019-09-01, Journal of the National Cancer Institute
DOI:10.1093/jnci/djy225
PMID:30629194
|
研究论文 | 本研究开发了一种基于深度学习的视觉评估算法,用于自动识别宫颈癌前病变/癌症 | 利用深度学习技术自动评估宫颈图像,提高了宫颈癌筛查的准确性和可重复性 | 研究依赖于历史数据,可能无法完全反映当前技术的最新进展 | 开发一种自动识别宫颈癌前病变/癌症的视觉评估算法 | 9406名18-94岁的女性,来自哥斯达黎加瓜纳卡斯特地区 | 计算机视觉 | 宫颈癌 | 深度学习 | 深度学习算法 | 图像 | 9406名女性,年龄18-94岁 |
6976 | 2025-03-10 |
Forecasting the eddying ocean with a deep neural network
2025-Mar-06, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-025-57389-2
PMID:40050275
|
研究论文 | 本文开发了一个名为WenHai的数据驱动全球海洋预报系统,通过训练深度神经网络来预测海洋中尺度涡旋的短期演变 | 首次将深度神经网络应用于全球海洋预报系统,并结合动量、热量和淡水通量的体公式来改进海气相互作用的表示 | 由于大气和海洋的动态特性不同,AI方法在海洋预报中的应用仍具有挑战性 | 提高全球海洋预报能力,特别是中尺度涡旋的短期演变预测 | 海洋中尺度涡旋 | 机器学习 | NA | 深度神经网络 | DNN | 海洋数据 | NA |
6977 | 2025-03-10 |
Classifying microfossil radiolarians on fractal pre-trained vision transformers
2025-Mar-06, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-90988-z
PMID:40050318
|
研究论文 | 本文探讨了使用预训练的视觉变换器(ViT)和公式驱动的监督学习(FDSL)技术对微化石(放射虫)进行分类的效果 | 首次将视觉变换器(ViT)和公式驱动的监督学习(FDSL)应用于地质学中的微化石分类,相比传统CNN模型,平均精度提高了6-8% | 未提及具体样本量和数据集的多样性,可能影响模型的泛化能力 | 探索新的深度学习技术在地质学图像分类中的应用 | 微化石(放射虫) | 计算机视觉 | NA | 公式驱动的监督学习(FDSL) | 视觉变换器(ViT) | 图像 | NA |
6978 | 2025-03-10 |
Deep learning-based image analysis in muscle histopathology using photo-realistic synthetic data
2025-Mar-06, Communications medicine
IF:5.4Q1
DOI:10.1038/s43856-025-00777-y
PMID:40050400
|
研究论文 | 本文介绍了一种名为SYNTA的新方法,用于生成逼真的合成生物医学图像数据,以解决当前生成模型和基于深度学习的图像分析中的挑战 | SYNTA方法采用完全参数化的方法创建针对特定生物医学任务的逼真合成训练数据集,解决了现有生成模型缺乏代表性和高质量真实数据的问题 | 需要进一步验证SYNTA方法在其他生物医学领域的适用性和效果 | 旨在通过生成逼真的合成生物医学图像数据,改进和加速生物医学图像分析 | 肌肉组织病理学和骨骼肌分析 | 数字病理学 | NA | 深度学习和生成模型 | GAN, Diffusion Models | 图像 | 两个真实世界的数据集 |
6979 | 2025-03-10 |
Frequency transfer and inverse design for metasurface under multi-physics coupling by Euler latent dynamic and data-analytical regularizations
2025-Mar-06, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-025-57516-z
PMID:40050630
|
研究论文 | 本文提出了一种多物理深度学习框架(MDLF),用于解决频率转移和多物理耦合问题,并在超表面设计中实现了未见频率段的预测 | 提出了结合多保真度DeepONet、欧拉潜在动态网络和数据解析反演网络的MDLF框架,能够在缺乏多物理响应知识的情况下,通过动态利用欧拉潜在空间和单物理信息,实现对未见频率段的预测 | 需要进一步验证在更广泛的多物理耦合场景下的适用性 | 解决频率转移问题,并实现超表面在未见频率段的多物理耦合预测 | 超表面 | 机器学习 | NA | 多物理深度学习框架(MDLF) | DeepONet, 欧拉潜在动态网络, 数据解析反演网络 | 频谱数据 | NA |
6980 | 2025-03-10 |
CUGUV: A Benchmark Dataset for Promoting Large-Scale Urban Village Mapping with Deep Learning Models
2025-Mar-06, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-025-04701-w
PMID:40050634
|
研究论文 | 本文介绍了CUGUV基准数据集,旨在通过深度学习模型促进大规模城中村(UV)的映射 | 提出了一个包含来自中国15个主要城市的数千个UV样本的基准数据集,并开发了一个创新的框架,有效整合和学习了多种数据源,以更好地解决跨城市UV映射任务 | 数据集主要集中在中国的城市,可能限制了其全球适用性 | 提高大规模城中村映射的准确性和模型的可转移性 | 城中村(UV) | 计算机视觉 | NA | 深度学习 | NA | 卫星图像 | 数千个UV样本,来自中国15个主要城市 |