本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6961 | 2025-02-10 |
Deep learning-based free-water correction for single-shell diffusion MRI
2025-Apr, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2025.110326
PMID:39827997
|
研究论文 | 本文提出了一种基于深度学习的单壳扩散MRI自由水校正方法,旨在提高扩散特性的准确估计 | 提出了一种深度学习框架,用于映射和校正DWI中的自由水部分体积污染,适用于单壳采集方案 | 需要进一步验证在不同临床数据集上的通用性和稳定性 | 提高扩散MRI中自由水校正的准确性,特别是在单壳采集方案中 | Human Connectome Project Young Adults (HCP-ya)、HCP Aging dataset (HCP-a) 以及 Brain Tumor Connectomics Data (BTC) | 医学影像处理 | NA | 扩散磁共振成像 (dMRI) | 深度学习模型 | MRI图像 | HCP-ya、HCP-a 和 BTC 数据集 |
6962 | 2025-02-10 |
FDuDoCLNet: Fully dual-domain contrastive learning network for parallel MRI reconstruction
2025-Apr, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2025.110336
PMID:39864600
|
研究论文 | 本文提出了一种新的全双域对比学习网络(FDuDoCLNet),用于并行MRI重建,以解决现有深度学习方法在重建质量上的局限性 | 提出了基于变分网络(VarNet)的全双域对比学习网络(FDuDoCLNet),通过引入双域对比损失来优化重建性能,并在图像域和小波域中同时进行加速并行成像(PI) | 现有重建网络很少考虑小波域中的多样化频率特征,且现有双域重建方法可能过于关注单一域的特征,导致重建图像中关键全局结构或局部细节的丢失 | 提高并行MRI重建的速度和质量 | MRI图像 | 计算机视觉 | NA | 深度学习 | FDuDoCLNet, VarNet | 图像 | fastMRI多线圈膝盖数据集 |
6963 | 2025-02-10 |
Decoding thoughts, encoding ethics: A narrative review of the BCI-AI revolution
2025-Mar-01, Brain research
IF:2.7Q3
DOI:10.1016/j.brainres.2024.149423
PMID:39719191
|
综述 | 本文综述了脑机接口(BCI)与人工智能(AI)整合的机制,评估了信号采集和处理技术的最新进展,并评估了AI增强的神经解码策略 | 本文强调了BCI-AI系统在信号质量、解码精度和用户适应方面的显著进展,特别是在高密度电极阵列、深度学习解码器、自适应算法和闭环优化框架方面的创新 | 尽管BCI-AI整合取得了显著进展,但在长期稳定性和用户训练方面仍存在挑战 | 分析BCI与AI整合的机制,评估信号采集和处理技术的最新进展,并评估AI增强的神经解码策略 | 脑机接口(BCI)与人工智能(AI)整合 | 脑机接口 | NA | 高密度电极阵列、深度学习解码器、自适应算法、闭环优化框架 | 深度学习 | 神经信号 | NA |
6964 | 2025-02-09 |
An AttSDNet model for multi-scale feature perception enhanced remote sensing classification of coastal salt-marsh wetlands
2025-Feb, Marine environmental research
IF:3.0Q2
DOI:10.1016/j.marenvres.2024.106899
PMID:39673892
|
研究论文 | 本文提出了一种增强的U-Net模型,结合注意力机制和多尺度特征提取,用于沿海盐沼湿地的遥感分类 | 引入了堆叠扩张卷积和通道-空间注意力机制模块,增强了模型对多尺度特征的学习能力,特别是在复杂沿海湿地中的小尺度地物特征提取 | 未提及具体的数据集大小或模型训练的计算资源需求 | 提高沿海湿地遥感图像分类的准确性,以支持湿地保护和生态恢复 | 中国山东半岛黄河口和胶州湾的沿海湿地 | 计算机视觉 | NA | 深度学习 | U-Net | 图像 | 使用Sentinel-2光学影像,未提及具体样本数量 |
6965 | 2025-02-10 |
Deep learning multi-classification of middle ear diseases using synthetic tympanic images
2025-Feb, Acta oto-laryngologica
IF:1.2Q3
DOI:10.1080/00016489.2024.2448829
PMID:39797517
|
研究论文 | 本文开发了一种基于深度学习的自动化诊断系统,用于通过鼓膜图像分类中耳疾病 | 使用生成对抗网络(GANs)生成高质量的合成鼓膜图像,以增强训练数据集,并探索其在医学诊断中的潜在应用 | 合成图像的加入并未显著提高诊断准确性,且仅使用合成图像训练时模型的诊断准确率仅为约70% | 开发一种自动化诊断系统,用于中耳疾病的分类 | 鼓膜图像,包括正常、急性中耳炎、渗出性中耳炎和慢性化脓性中耳炎 | 计算机视觉 | 中耳疾病 | 生成对抗网络(GANs) | InceptionV3 | 图像 | 472张内窥镜图像和200张合成图像 |
6966 | 2025-02-10 |
An Efficient Lightweight Multi Head Attention Gannet Convolutional Neural Network Based Mammograms Classification
2025-Feb, The international journal of medical robotics + computer assisted surgery : MRCAS
DOI:10.1002/rcs.70043
PMID:39921233
|
研究论文 | 本研究旨在利用深度学习创建自动化系统,以更好地检测和分类乳腺X光图像中的乳腺癌,帮助医疗专业人员克服时间消耗、特征提取问题和训练模型有限等挑战 | 引入了轻量级多头注意力Gannet卷积神经网络(LMGCNN)来有效分类乳腺X光图像,并结合了多种图像增强和特征提取技术 | 未提及具体的研究局限性 | 创建自动化系统以改进乳腺癌的检测和分类 | 乳腺X光图像 | 计算机视觉 | 乳腺癌 | Wiener滤波、非锐化掩蔽、自适应直方图均衡化、灰度共生矩阵(GLCM) | LMGCNN(轻量级多头注意力Gannet卷积神经网络) | 图像 | 两个数据集:CBIS-DDSM和MIAS |
6967 | 2025-02-09 |
Design and structure of overlapping regions in PCA via deep learning
2025-Jun, Synthetic and systems biotechnology
IF:4.4Q1
DOI:10.1016/j.synbio.2024.12.007
PMID:39917768
|
研究论文 | 本文提出了一种基于深度学习模型的SmartCut算法,用于设计重叠区域并提高PCA实验的成功率 | 利用深度学习模型从大量合成数据中识别重叠区域的潜在序列表示,并开发了SmartCut算法以提高合成成功率 | 未提及具体局限性 | 提高基因组合成中重叠区域设计的成功率 | DNA序列的重叠区域 | 机器学习 | NA | PCA(聚合酶循环组装) | 深度学习模型 | DNA序列数据 | 未提及具体样本数量 |
6968 | 2025-02-09 |
SIAM: Spatial and Intensity Awareness Module for cerebrovascular segmentation
2025-Mar, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2024.108511
PMID:39626410
|
研究论文 | 本文提出了一种新的空间和强度感知模块(SIAM),用于有限的脑血管分割,通过引入空间和像素强度扰动来构建新的匹配数据,以增强模型的学习能力 | SIAM模块通过空间和像素强度扰动构建新的匹配数据,增强了模型对脑血管语义的理解,且具有即插即用的特性 | 尽管SIAM在有限数据下表现良好,但其在更大规模数据集上的性能仍需进一步验证 | 提高脑血管分割的准确性和鲁棒性,特别是在数据有限的情况下 | 脑血管图像 | 计算机视觉 | 脑血管疾病 | 深度学习 | SIAM模块 | 3D图像 | 三个不同模态的脑血管数据集 |
6969 | 2025-02-09 |
A multi-task framework for breast cancer segmentation and classification in ultrasound imaging
2025-Mar, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2024.108540
PMID:39647406
|
研究论文 | 本文提出了一种用于超声图像中乳腺癌分割和分类的多任务框架,旨在提高乳腺癌病变的检测效果 | 引入了一种端到端的多任务框架,利用乳腺癌病变分类和分割任务之间的内在相关性,并在广泛使用的公共乳腺癌超声数据集BUSI上进行了综合分析 | 研究中未提及具体的数据标准化问题,且未详细讨论非肿瘤图像在训练中的影响 | 探索多任务系统在增强乳腺癌病变检测中的潜力 | 乳腺癌超声图像 | 计算机视觉 | 乳腺癌 | 深度学习 | 多任务框架 | 图像 | 使用公共乳腺癌超声数据集BUSI |
6970 | 2025-02-09 |
Time-hybrid OSAformer (THO): A hybrid temporal sequence transformer for accurate detection of obstructive sleep apnea via single-lead ECG signals
2025-Mar, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2024.108558
PMID:39662234
|
研究论文 | 本文提出了一种名为时间混合OSAformer(THO)的新方法,利用单导联心电图信号进行阻塞性睡眠呼吸暂停(OSA)的准确检测 | THO模型结合了扩张卷积和长短期记忆(LSTM)的混合架构,以及多尺度特征融合策略,并集成了多头部注意力模型中的嵌入式记忆衰减机制,以捕捉时间序列数据的实时特征 | NA | 提高使用单导联心电图信号进行阻塞性睡眠呼吸暂停(OSA)检测的准确性 | 阻塞性睡眠呼吸暂停(OSA)患者 | 机器学习 | 阻塞性睡眠呼吸暂停 | 单导联心电图信号分析 | THO(结合扩张卷积和LSTM的混合架构) | 时间序列数据(心电图信号) | NA |
6971 | 2025-02-09 |
EpiBrCan-Lite: A lightweight deep learning model for breast cancer subtype classification using epigenomic data
2025-Mar, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2024.108553
PMID:39667144
|
研究论文 | 本文提出了一种名为EpiBrCan-Lite的轻量级深度学习模型,用于利用DNA甲基化数据对乳腺癌亚型进行分类 | EpiBrCan-Lite模型通过改进传统的Transformer编码器,使用GRU模块替代MLP模块,减少了可训练权重参数(TWP),并捕捉了输入特征数据的长程依赖关系 | 模型在TCGA乳腺癌数据集上进行了验证,但该数据集存在类别不平衡问题,尽管使用了SMOTE技术进行缓解,但仍可能影响模型的泛化能力 | 提高乳腺癌亚型分类的准确性和效率,以便更好地进行患者预后 | 乳腺癌亚型分类 | 机器学习 | 乳腺癌 | DNA甲基化数据 | EpiBrCan-Lite(基于Transformer和GRU的混合模型) | DNA甲基化数据 | TCGA乳腺癌数据集 |
6972 | 2025-02-09 |
Improving real-time detection of laryngeal lesions in endoscopic images using a decoupled super-resolution enhanced YOLO
2025-Mar, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2024.108539
PMID:39689500
|
研究论文 | 本研究提出了一种名为SRE-YOLO的深度学习方法,用于实时检测喉部病变,通过结合YOLOv8n基线和超分辨率分支来提高病变检测的准确性 | SRE-YOLO方法在YOLOv8n基线的基础上集成了超分辨率分支,以增强病变检测,并在推理过程中解耦以保持低计算需求 | 研究依赖于多中心数据集,可能受到数据集多样性和采集模态的限制 | 开发一种高效的深度学习驱动决策支持系统,用于实时检测喉部病变 | 喉部病变 | 计算机视觉 | 喉癌 | 深度学习 | YOLOv8n | 图像 | 多中心数据集,涵盖多种喉部病理和采集模态 |
6973 | 2025-02-09 |
Transferable automatic hematological cell classification: Overcoming data limitations with self-supervised learning
2025-Mar, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2024.108560
PMID:39693791
|
研究论文 | 本研究提出将自监督学习(SSL)集成到细胞分类流程中,以解决数据稀缺和模型泛化能力有限的问题 | 通过自监督学习提取细胞图像特征,无需使用图像注释,并在少量标注图像上训练轻量级机器学习分类器,提高了分类准确性和模型适应性 | 研究仅基于四个公开的血液学单细胞图像数据集,可能无法完全代表所有实验室的情况 | 开发稳健可靠的自动细胞分类系统,以解决数据稀缺和模型泛化能力有限的问题 | 外周血和骨髓细胞 | 数字病理学 | 血液疾病 | 自监督学习(SSL) | 轻量级机器学习分类器 | 图像 | 四个公开的血液学单细胞图像数据集,包括一个骨髓和三个外周血数据集 |
6974 | 2025-02-09 |
Multimodal autism detection: Deep hybrid model with improved feature level fusion
2025-Mar, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2024.108492
PMID:39700689
|
研究论文 | 本研究提出了一种基于深度学习的多模态自闭症检测模型,通过改进的特征级融合方法提高预测准确性 | 提出了一种新的自闭症检测模型,结合了改进的特征级融合方法和混合模型(CNN和Bi-GRU),显著提高了预测准确性 | 未提及样本的具体来源和多样性,可能影响模型的泛化能力 | 开发一种基于深度学习的自闭症检测模型,以提高诊断准确性 | 自闭症谱系障碍(ASD)患者 | 机器学习 | 自闭症 | Gabor滤波、Wiener滤波、CSP、改进的奇异谱熵、相关维度、改进的主动外观模型、GLCM特征、SLBT | CNN、Bi-GRU | 图像、EEG信号 | NA |
6975 | 2025-02-09 |
Robust multi-modal fusion architecture for medical data with knowledge distillation
2025-Mar, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2024.108568
PMID:39709743
|
研究论文 | 本文提出了一种新颖且高效的多模态融合框架,用于医疗数据集,即使在缺少一个或多个模态的情况下也能保持一致的性能 | 提出了一种基于池化瓶颈(PB)注意力的多模态融合模块,并结合知识蒸馏(KD)和梯度调制(GM)方法,以增强模型在缺失模态情况下的推理能力 | 研究仅在MIMIC-IV数据集上进行评估,可能需要进一步验证在其他数据集上的泛化能力 | 开发一种能够在缺失模态情况下保持性能的多模态融合框架,用于医疗数据 | 胸部X光片、现病史文本、人口统计和实验室测试等表格数据 | 数字病理 | NA | 知识蒸馏(KD)、梯度调制(GM) | 多模态融合模型 | 图像、文本、表格数据 | MIMIC-IV数据集 |
6976 | 2025-02-09 |
TD-STrans: Tri-domain sparse-view CT reconstruction based on sparse transformer
2025-Mar, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2024.108575
PMID:39733746
|
研究论文 | 本文提出了一种基于稀疏变换器的三域稀疏视图CT重建模型(TD-STrans),以解决稀疏视图CT重建中的过平滑问题 | 将频域信息引入投影-图像域重建,提出了一种三域稀疏视图CT重建模型,通过多域联合损失函数提升重建质量 | 未明确提及模型在更广泛数据集上的泛化能力或计算效率 | 解决稀疏视图CT重建中的过平滑问题,提升图像细节保留能力 | 稀疏视图CT图像 | 计算机视觉 | NA | 稀疏变换器 | TD-STrans | CT图像 | 淋巴结数据集和核桃数据集 |
6977 | 2025-02-09 |
Preserving privacy in healthcare: A systematic review of deep learning approaches for synthetic data generation
2025-Mar, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2024.108571
PMID:39742693
|
系统综述 | 本文系统回顾了医疗保健领域中用于合成数据生成的深度学习技术,重点关注其在保持数据效用和增强隐私保护方面的能力 | 本文首次系统性地评估了GANs、VAEs和扩散模型在医疗保健数据生成中的应用,并特别关注了差分隐私和联邦学习等隐私增强方法 | 在保持时间相关性、减少偏见以及符合监管框架方面仍存在挑战,特别是对于纵向和高维数据 | 探讨深度学习技术在医疗保健领域中生成合成数据的潜力,以促进隐私保护的数据共享 | 医疗保健数据 | 机器学习 | NA | 深度学习 | GANs, VAEs, 扩散模型 | 表格数据、信号数据、图像数据、多模态数据 | NA |
6978 | 2025-02-09 |
A novel lightweight deep learning based approaches for the automatic diagnosis of gastrointestinal disease using image processing and knowledge distillation techniques
2025-Mar, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2024.108579
PMID:39798279
|
研究论文 | 本文提出了一种轻量级深度学习模型,用于通过图像处理和知识蒸馏技术自动诊断胃肠道疾病 | 创新点在于结合了模型压缩技术、ConvLSTM层和ConvNext Blocks,并通过知识蒸馏进行优化,显著降低了计算成本 | 未提及模型在其他数据集或实际临床环境中的泛化能力 | 解决深度神经网络在临床环境中计算效率低下的问题 | 胃肠道疾病的自动诊断 | 计算机视觉 | 胃肠道疾病 | 图像处理、知识蒸馏 | ConvLSTM、ConvNext Blocks | 图像 | 6000张内窥镜图像 |
6979 | 2025-02-09 |
Deep Learning-Based Accelerated MR Cholangiopancreatography Without Fully-Sampled Data
2025-Mar, NMR in biomedicine
IF:2.7Q1
DOI:10.1002/nbm.70002
PMID:39907193
|
研究论文 | 本研究旨在通过深度学习加速磁共振胰胆管成像(MRCP)的采集,并在3T和0.55T场强下进行评估 | 使用深度学习方法进行MRCP重建,无需完全采样数据,并在不同场强下验证其效果 | 研究仅涉及健康志愿者,未在患者群体中验证 | 加速MRCP采集并保持图像质量 | 35名健康志愿者 | 医学影像 | NA | 深度学习重建 | 深度学习模型 | 磁共振图像 | 35名健康志愿者 |
6980 | 2025-02-09 |
Fully automated segmentation of brain and scalp blood vessels on multi-parametric magnetic resonance imaging using multi-view cascaded networks
2025-Mar, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2025.108584
PMID:39761623
|
研究论文 | 本研究提出了一种多视图级联深度学习网络(MVPCNet),用于全自动分割脑部和头皮血管,以提高神经外科导航的准确性 | 提出了一种结合多视图学习、多参数输入和多视图集成模块的多视图级联深度学习网络,显著提高了小血管和低对比度血管的分割性能 | 研究仅基于155名患者的数据集进行评估,样本量相对较小,可能影响模型的泛化能力 | 探索一种克服小血管和头皮血管分割挑战的解决方案,以提高神经外科导航的准确性 | 脑部和头皮血管 | 计算机视觉 | NA | 深度学习 | 多视图级联深度学习网络(MVPCNet) | 多参数磁共振成像(MRI)图像 | 155名患者 |