深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24902 篇文献,本页显示第 7021 - 7040 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
7021 2025-03-09
Synthesizing 3D Multi-Contrast Brain Tumor MRIs Using Tumor Mask Conditioning
2024-Feb, Proceedings of SPIE--the International Society for Optical Engineering
研究论文 本文提出了一种基于肿瘤掩码条件的3D多对比脑肿瘤MRI合成方法,以解决医学图像数据稀缺和不平衡的问题 将2D潜在扩散模型调整为生成3D多对比脑肿瘤MRI数据,并引入肿瘤掩码作为条件,生成高质量且多样化的样本 未提及模型在临床环境中的实际应用效果或生成样本的临床验证 解决脑肿瘤MRI数据稀缺问题,提升深度学习模型的训练数据可用性 脑肿瘤MRI数据 计算机视觉 脑肿瘤 3D潜在扩散模型 3D自编码器、条件3D扩散概率模型(DPM) 3D多对比MRI图像 两个数据集:TCGA公共数据集和UTSW内部数据集
7022 2025-03-09
MRI-Based Deep Learning Method for Classification of IDH Mutation Status
2023-Sep-05, Bioengineering (Basel, Switzerland)
研究论文 本研究旨在开发基于T2加权MRI图像的深度学习网络,用于非侵入性IDH突变状态分类,并与多对比网络进行比较 开发了仅使用T2加权图像的深度学习网络(T2-net)和多对比网络(MC-net),并在超过1100个样本上进行了测试,这是迄今为止最大的基于图像的IDH分类研究 NA 开发用于IDH突变状态分类的深度学习算法 胶质瘤患者的MRI图像和基因组数据 计算机视觉 胶质瘤 MRI 深度学习网络(T2-net和MC-net) 图像 超过1100个样本,包括来自多个数据库的病例
7023 2025-03-09
Deep learning identifies robust gender differences in functional brain organization and their dissociable links to clinical symptoms in autism
2022-Apr, The British journal of psychiatry : the journal of mental science
研究论文 本研究利用深度学习技术识别自闭症谱系障碍(ASD)中男女功能脑组织的显著差异,并探讨这些差异与临床症状的关联 开发了一种新的时空深度神经网络(stDNN),用于分析功能磁共振成像数据,成功区分ASD患者中的性别差异,并发现这些差异与临床症状的特定关联 研究主要依赖于神经影像数据,可能忽略了其他潜在的生物或环境因素对性别差异的影响 识别ASD中男女功能脑组织的差异,并预测症状严重程度 自闭症谱系障碍(ASD)患者 机器学习和神经影像分析 自闭症谱系障碍 功能磁共振成像(fMRI)和深度学习 时空深度神经网络(stDNN) 神经影像数据 773名ASD患者
7024 2025-03-08
Kellgren-Lawrence grading of knee osteoarthritis using deep learning: Diagnostic performance with external dataset and comparison with four readers
2025-Jun, Osteoarthritis and cartilage open
研究论文 本研究评估了深度学习模型在外部数据集上对膝关节骨关节炎的Kellgren-Lawrence (KL)分级诊断性能,并与四位读者进行了比较 使用深度学习模型在外部数据集上评估膝关节骨关节炎的KL分级,并与多位人类读者进行比较,展示了深度学习在医学影像诊断中的潜力 研究样本量较小(208例膝关节X光片),且仅使用了单一外部数据集进行验证 评估深度学习模型在膝关节骨关节炎KL分级中的诊断性能 膝关节骨关节炎的X光片 计算机视觉 骨关节炎 深度学习 深度学习模型 图像 208例膝关节X光片
7025 2025-03-08
Optimizing Catheter Verification: An Understandable AI Model for Efficient Assessment of Central Venous Catheter Placement in Chest Radiography
2025-Apr-01, Investigative radiology IF:7.0Q1
研究论文 本研究旨在通过分割支持材料和解剖结构来提高中心静脉导管(CVC)错位检测的精确性和可理解性 结合分类网络和分割网络的深度学习模型,提高了CVC错位检测的准确性和临床可解释性 研究中使用的数据集可能存在标签不准确的问题,且模型的泛化能力需要进一步验证 提高中心静脉导管(CVC)错位检测的准确性和临床可解释性 中心静脉导管(CVC)在胸部X光片中的位置 医学影像分析 NA 深度学习 分类网络、分割网络及其组合 胸部X光片 1006张带注释的仰卧胸部X光片
7026 2025-03-08
Assessment of Emphysema on X-ray Equivalent Dose Photon-Counting Detector CT: Evaluation of Visual Scoring and Automated Quantification Algorithms
2025-Apr-01, Investigative radiology IF:7.0Q1
研究论文 本研究评估了在X射线等效剂量光子计数探测器CT上使用视觉评分、低衰减体积(LAV)和深度学习方法估计肺气肿范围的可行性和效果,旨在探索未来剂量减少的潜力 首次在X射线等效剂量光子计数探测器CT上评估了视觉评分和自动化量化算法在肺气肿估计中的应用,并探索了剂量减少的潜力 深度学习和LAV算法在X射线剂量扫描中高估了肺气肿范围 评估在X射线等效剂量光子计数探测器CT上估计肺气肿范围的可行性和效果 101名前瞻性入组的患者 数字病理学 慢性阻塞性肺疾病 CT扫描、深度学习方法 深度学习模型 图像 101名患者
7027 2025-03-08
FusionNet: Dual input feature fusion network with ensemble based filter feature selection for enhanced brain tumor classification
2025-Apr-01, Brain research IF:2.7Q3
研究论文 本文提出了一种名为FusionNet的新方法,利用正常和分割的MRI图像来提高脑肿瘤分类的准确性 FusionNet结合了正常和分割的MRI图像,使用基于注意力机制和集成特征选择的方法来优先考虑相关特征,从而提高分类性能 NA 提高脑肿瘤分类的准确性 脑肿瘤 计算机视觉 脑肿瘤 深度学习 FusionNet MRI图像 多个数据集(Figshare, Kaggle, Sartaj, 组合数据集)
7028 2025-03-08
Lightweight sparse optoacoustic image reconstruction via an attention-driven multi-scale wavelet network
2025-Apr, Photoacoustics IF:7.1Q1
研究论文 本文提出了一种轻量级的稀疏光声图像重建网络AD-WaveNet,通过结合离散二维小波变换和自适应注意力机制,提高了稀疏采样下的图像重建质量并降低了计算复杂度 AD-WaveNet网络创新性地将离散二维小波变换与自适应注意力机制相结合,利用小波变换的多尺度分解特性,强调不同尺度下的关键特征,从而在降低计算复杂度和参数量的同时保持最佳重建质量 NA 提高稀疏采样下光声断层扫描(PAT)图像的重建质量,并降低计算复杂度 光声断层扫描(PAT)图像 计算机视觉 NA 离散二维小波变换(DWT) AD-WaveNet 图像 NA
7029 2025-03-08
Deep learning-based quantification of T2-FLAIR mismatch sign: extending IDH mutation prediction in adult-type diffuse lower-grade glioma
2025-Mar-07, European radiology IF:4.7Q1
研究论文 本研究探讨了基于深度学习的定量T2-FLAIR不匹配比率(qT2FM)在成人型弥漫性低级别胶质瘤(LGG)中预测IDH突变状态的价值 利用深度学习进行全自动肿瘤分割,首次提出qT2FM作为识别IDH突变状态和IDHmut-Noncodel亚型的有力预测指标 研究为回顾性设计,样本量相对有限,且未涉及其他类型胶质瘤的验证 评估qT2FM在成人型弥漫性LGG中预测IDH突变状态的有效性 218名成人型弥漫性LGG患者 数字病理学 脑胶质瘤 深度学习 深度学习分割模型 医学影像 218名患者(125名男性,平均年龄47岁±15)
7030 2025-03-08
Automated deep learning-assisted early detection of radiation-induced temporal lobe injury on MRI: a multicenter retrospective analysis
2025-Mar-07, European radiology IF:4.7Q1
研究论文 本文评估了一种基于深度学习的自动化工具(RTLI-DM)在MRI上早期检测辐射诱导的颞叶损伤(RTLI)的效果 开发并验证了一种结合Unet++和修改版DenseNet-121网络的自动化RTLI检测模型,显著提高了放射科医生的诊断性能并减少了阅读时间 尽管RTLI-DM显著提高了诊断性能,但在临床应用中仍需进一步验证 评估自动化深度学习工具在早期检测辐射诱导颞叶损伤中的效果 396名RTLI患者和3181名非RTLI患者 数字病理学 颞叶损伤 MRI Unet++, DenseNet-121 图像 396名RTLI患者和3181名非RTLI患者,总计3577名患者
7031 2025-03-08
The value of radiomics and deep learning based on PET/CT in predicting perineural nerve invasion in rectal cancer
2025-Mar-07, Abdominal radiology (New York)
研究论文 本研究探讨了基于PET/CT的放射组学特征和深度学习特征在预测直肠癌神经周围浸润(PNI)中的价值 结合PET代谢参数、放射组学特征和深度学习特征构建了联合模型,用于预测直肠癌的神经周围浸润 样本量相对较小,且外部验证集仅来自两家医院 研究PET/CT的放射组学和深度学习特征在预测直肠癌神经周围浸润中的应用价值 直肠癌患者 数字病理 直肠癌 PET/CT 深度学习模型、放射组学模型、联合模型 PET/CT图像 120例直肠癌患者(56例PNI阳性,64例PNI阴性),外加31例来自其他两家医院的患者作为外部验证集
7032 2025-03-08
Deep Learning-based Multi-class Classification for Neonatal Respiratory Diseases on Chest Radiographs in Neonatal Intensive Care Units
2025-Mar-06, Neonatology IF:2.6Q1
研究论文 本研究介绍了一种基于深度学习的自动算法,用于分类新生儿重症监护病房中的各种新生儿呼吸系统疾病和健康肺 使用大规模高质量多类标注的胸部X光图像数据集,结合非影像数据,开发了一种新的深度学习模型,用于新生儿呼吸系统疾病的自动分类 研究仅基于韩国10所大学医院的数据,可能限制了模型的普遍适用性 开发一种自动分类算法,以支持新生儿科医生对重症新生儿的及时准确决策 新生儿重症监护病房中的新生儿 计算机视觉 新生儿呼吸系统疾病 深度学习 修改后的ResNet50 胸部X光图像 训练集34,598张,验证集4,370张,测试集4,370张
7033 2025-03-08
Open-Source Manually Annotated Vocal Tract Database for Automatic Segmentation from 3D MRI Using Deep Learning: Benchmarking 2D and 3D Convolutional and Transformer Networks
2025-Mar-05, Journal of voice : official journal of the Voice Foundation IF:2.5Q1
研究论文 本研究评估了深度学习算法在3D MRI数据中自动分割声道的效果,并比较了四种不同的深度学习架构 首次使用开源手动注释的声道数据库,并比较了2D和3D卷积网络以及Transformer网络在声道分割中的表现 所有模型在分割某些特定声音(如/kõn/)时表现不佳,且在骨性区域(如牙齿附近)频繁出现错误 评估深度学习算法在3D MRI数据中自动分割声道的效果 10名法语发音者的53个声道体积,包括21个独特的法语音素和3个独特的无声任务 计算机视觉 NA 深度学习 2D U-Net, 3D U-Net, 3D U-Net with transfer learning, 3D transformer U-Net (3D U-NetR) 3D MRI图像 53个声道体积来自10名法语发音者
7034 2025-03-08
An Earth Mover's Distance-Based Self-Supervised Framework for Cellular Dynamic Grading in Live-Cell Imaging
2025-Mar, Journal of computational biology : a journal of computational molecular cell biology IF:1.4Q2
研究论文 本文提出了一种基于地球移动距离的自监督框架,用于活细胞成像中的细胞动态分级 提出了一种新的自监督框架,利用地球移动距离构建概率转移矩阵,并通过损失函数约束来增强模型学习时空动态的能力 依赖于细胞动态分级与细胞外观变化速度一致性的假设,可能不适用于所有细胞类型或条件 解决活细胞动态分级任务中数据收集和标注的挑战,提高深度学习模型的性能 活细胞显微视频中的细胞动态 计算机视觉 NA 自监督学习 神经网络 视频 NA
7035 2025-03-08
Deep learning based super-resolution for CBCT dose reduction in radiotherapy
2025-Mar, Medical physics IF:3.2Q1
研究论文 本文提出了一种基于深度学习的超分辨率方法,用于减少放射治疗中CBCT的剂量 首次在CBCT剂量减少的背景下探索了深度学习超分辨率的应用,并提出了在投影域和图像域中使用增强型超分辨率生成对抗网络(ESRGAN)来恢复低剂量CBCT的图像质量 图像相似性指标受噪声水平影响,未能完全反映视觉上的改进 减少CBCT成像剂量,同时保持图像质量 头颈癌患者的CBCT扫描 数字病理 头颈癌 深度学习超分辨率 ESRGAN 图像 2997个CBCT扫描
7036 2025-03-08
Breast radiotherapy planning: A decision-making framework using deep learning
2025-Mar, Medical physics IF:3.2Q1
研究论文 本研究开发了一个利用深度学习预测剂量分布的决策框架,以帮助选择最佳乳腺癌放射治疗技术 使用2D U-Net卷积神经网络模型预测剂量分布图,并通过外部验证展示了该框架在临床决策中的高准确性和可靠性 研究依赖于回顾性数据集,且样本量相对较小(346名患者训练,30名患者验证),可能影响模型的泛化能力 开发一个基于深度学习的决策框架,以优化乳腺癌放射治疗计划的选择 乳腺癌患者 数字病理 乳腺癌 IMRT(调强放射治疗)和3D-CRT(三维适形放射治疗) 2D U-Net CNN CT图像和剂量分布图 346名患者用于训练和调优,30名患者用于外部验证
7037 2025-03-08
DRGAT: Predicting Drug Responses Via Diffusion-Based Graph Attention Network
2025-Mar, Journal of computational biology : a journal of computational molecular cell biology IF:1.4Q2
研究论文 本文介绍了一种名为DRGAT的药物反应预测方法,结合了去噪扩散隐式模型和图注意力网络,用于提高药物反应的预测准确性 DRGAT方法结合了去噪扩散隐式模型和数据增强技术,以及高阶邻居传播的图注意力网络,显著提高了药物反应预测的准确性 生物数据集通常高维但样本量小,可能导致过拟合和泛化能力差的问题 提高基于患者基因组特征的药物反应预测准确性,推动个性化医疗的发展 药物反应预测 机器学习 NA 去噪扩散隐式模型,图注意力网络(GAT) GAT, HO-GATs 基因表达(GE)数据 NA
7038 2025-03-08
Automatic plan selection using deep network-A prostate study
2025-Mar, Medical physics IF:3.2Q1
研究论文 本文介绍了一种使用深度学习框架自动选择前列腺高剂量率(HDR)近距离放射治疗计划的方法 引入了新的视觉类标准,并结合常用的剂量体积直方图(DVH)标准,训练深度学习算法来自动选择和排名治疗计划 研究仅在835名前列腺癌患者的数据集上进行训练,并在20名患者的独立队列中进行评估,样本量相对较小 开发一种自动选择最佳HDR近距离放射治疗计划的算法 前列腺癌患者的HDR近距离放射治疗计划 数字病理 前列腺癌 深度学习 深度网络 3D图像 835名前列腺癌患者用于训练,20名患者用于评估
7039 2025-03-08
A neural network to create super-resolution MR from multiple 2D brain scans of pediatric patients
2025-Mar, Medical physics IF:3.2Q1
研究论文 本文提出了一种基于卷积神经网络的超分辨率方法,用于从儿科患者的多平面2D低分辨率脑部扫描中重建高分辨率3D MR图像 提出了一种多级密集连接的超分辨率卷积神经网络(mDCSRN),能够从两个垂直的低分辨率扫描中重建3D高分辨率图像,并引入了运动伪影、模糊和配准误差以模拟真实情况 需要进一步验证其在其他结构分析任务中的有效性 通过深度学习技术从常规2D低分辨率扫描中重建高分辨率3D MR图像,以便于提取结构生物标志物 儿科患者的脑部MR图像 计算机视觉 儿童癌症 卷积神经网络(CNN) mDCSRN 图像 90个高分辨率T1儿科头部扫描(ABCD研究),10个新ABCD图像,18个CBTN研究图像,6个儿科头颈癌患者的真实随访图像
7040 2025-03-08
An automated treatment planning portfolio for whole breast radiotherapy
2025-Mar, Medical physics IF:3.2Q1
研究论文 本研究开发了一套完整的自动化放射治疗计划组合,用于全乳放疗,适应不同的患者因素、临床方法和可用资源 提出了一个全面的、端到端的自动化放疗解决方案,结合了多种治疗方法和深度学习模型,适应不同的患者和治疗需求 研究中使用的样本量相对较小,且主要来自特定机构,可能限制了结果的普遍性 开发一套自动化放疗计划组合,以适应不同的患者因素和临床需求 全乳放疗患者 数字病理 乳腺癌 深度学习模型(nnU-net)、RapidPlan模型 nnU-net 放疗计划数据 15名内部患者(150个计划)和40名来自瑞士、阿根廷、伊朗和美国的外部患者(360个计划)
回到顶部