深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 25195 篇文献,本页显示第 7041 - 7060 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
7041 2025-03-17
Quantitative multislice and jointly optimized rapid CEST for in vivo whole-brain imaging
2025-Mar-14, Magnetic resonance in medicine IF:3.0Q2
研究论文 本文开发了一种用于体内全脑成像的定量多层化学交换饱和转移(CEST)调度优化和脉冲序列,以减少多层序列固有的灵敏度损失 开发了一种深度学习框架,用于同时优化扫描参数和切片顺序,提高了多层CEST成像的准确性和可重复性 研究仅在3名健康受试者中进行了测试,样本量较小,且仅在一名受试者中测试了全脑临床成像的可行性 开发一种减少多层序列灵敏度损失的定量多层CEST调度优化和脉冲序列 健康受试者的大脑白质(WM)和灰质(GM)区域 医学影像 NA 化学交换饱和转移(CEST) 深度学习框架 医学影像数据 3名健康受试者
7042 2025-03-17
Self-training EEG discrimination model with weakly supervised sample construction: An age-based perspective on ASD evaluation
2025-Mar-10, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 本研究开发了一个名为STEM的自训练EEG判别模型框架,用于在标记样本有限的情况下优化自闭症谱系障碍(ASD)的评估 STEM框架通过自训练模型和伪标签样本构建,解决了标记样本有限和个体差异的问题,特别是在ASD评估中表现出色 研究主要依赖于有限的标记样本,且样本来自ASD可疑儿童,可能限制了模型的泛化能力 优化EEG判别模型,提高ASD评估的准确性和适应性 自闭症谱系障碍(ASD)可疑儿童的静息态EEG数据 脑机接口 自闭症谱系障碍 自训练模型,伪标签样本构建 AutoEncoder, BiGRU, 多任务学习模型(MAC) EEG数据 175名不同年龄组的ASD可疑儿童
7043 2025-03-17
Toward understanding the role of genomic repeat elements in neurodegenerative diseases
2025-Mar-01, Neural regeneration research IF:5.9Q1
综述 本文综述了基因组重复元件变异与多种神经退行性疾病之间的关联,并探讨了长读长测序技术和计算模型在识别疾病相关重复元件变异中的应用 强调了基因组重复区域在神经退行性疾病中的重要作用,并介绍了利用长读长测序技术和深度学习语言模型来增强对重复元件变异功能影响的理解 未提及具体的研究数据或样本量,可能缺乏实证支持 探讨基因组重复元件在神经退行性疾病中的作用及其分子机制 基因组重复元件变异 基因组学 神经退行性疾病 长读长测序技术 深度学习语言模型 基因组数据 NA
7044 2025-03-17
Can artificial intelligence lower the global sudden cardiac death rate? A narrative review
2025 Mar-Apr, Journal of electrocardiology IF:1.3Q3
综述 本文探讨了人工智能在预测和预防心脏骤停中的作用和应用 综述了人工智能、机器学习和深度学习在心脏骤停风险分层中的显著前景,并提出了未来研究的方向 当前的人工智能技术尚未得到充分的训练和测试,需要进一步研究可解释性技术、更大的样本量、外部验证、更多样化的患者样本、多模态工具、伦理和偏见缓解 探索人工智能在预测和预防心脏骤停中的作用和应用 心脏骤停 机器学习 心血管疾病 NA 机器学习, 深度学习 NA NA
7045 2025-03-17
Goose multi-omics database: A comprehensive multi-omics database for goose genomics
2025-Mar, Poultry science IF:3.8Q1
研究论文 本文介绍了鹅多组学数据库(GMD),一个整合鹅基因组数据的统一平台 GMD是首个为鹅基因组研究提供统一接口的多组学数据库,集成了多种分析工具如GBrowse和BLAST,并支持深度学习等前沿方法 未提及数据库的具体数据量或覆盖范围,可能限制了其在某些研究领域的应用 构建一个统一的平台,整合和分析鹅的基因组数据,以促进鹅生物学研究 鹅的基因组数据 基因组学 NA 多组学分析 深度学习 基因组数据 未明确提及具体样本数量
7046 2025-03-17
The use of artificial intelligence to aid the diagnosis of lung cancer - A retrospective-cohort study
2025-Mar, Radiography (London, England : 1995)
研究论文 本研究探讨了基于深度学习的自动检测算法(DLAD)在胸部X光片(CXR)解释中用于肺癌早期诊断的效果 研究表明AI软件在检测CXR上最初未被发现的肺癌方面表现出色,并有可能提高肺癌检测率并缩短诊断时间 研究中存在假阳性率较高的问题,且样本量相对较小 评估AI软件在肺癌诊断中的临床有效性 105名肺癌患者和103名阴性对照的CXR和胸部CT扫描 数字病理 肺癌 深度学习 DLAD 图像 208名患者的320张CXR
7047 2025-03-17
The potential use of deep learning in performing autocorrection of setup errors in patients receiving radiotherapy
2025-Mar, Radiography (London, England : 1995)
研究论文 本文探讨了使用深度学习在放射治疗中自动校正患者定位错误的可行性 利用神经网络对获取的端口图像(PFIs)和数字重建放射影像(DRRs)进行自动校正,展示了AI在放射治疗中的潜在应用 需要进一步研究以验证该方法在临床实践中的有效性 探索人工智能在辅助放射治疗患者定位校正中的应用 接受放射治疗的脑部和气道消化道恶性肿瘤患者 数字病理 脑癌, 气道消化道恶性肿瘤 神经网络 神经网络 图像 156名患者(96名气道消化道恶性肿瘤患者,60名脑肿瘤患者)
7048 2025-03-17
An optimized lightweight real-time detection network model for IoT embedded devices
2025-Jan-30, Scientific reports IF:3.8Q1
研究论文 本文提出并部署了一种适用于物联网嵌入式设备的优化轻量级实时检测网络模型FRYOLO,用于解决YOLOv8在资源受限设备上部署的挑战 提出了一种针对物联网嵌入式设备优化的轻量级实时检测网络模型FRYOLO,解决了YOLOv8在资源受限设备上部署的难题 未提及模型在其他类型目标检测任务中的表现,仅以水果检测为例进行了验证 开发一种适用于物联网嵌入式设备的轻量级实时检测网络模型 物联网嵌入式设备中的实时目标检测任务 计算机视觉 NA 深度学习 YOLOv8, FRYOLO 图像 未明确提及具体样本数量,仅以水果检测为例
7049 2025-03-17
DeepSeeded: Volumetric Segmentation of Dense Cell Populations with a Cascade of Deep Neural Networks in Bacterial Biofilm Applications
2024-Mar-15, Expert systems with applications IF:7.5Q1
研究论文 本文提出了一种名为DeepSeeded的新型3D细胞分割方法,通过级联深度学习架构估计种子,用于经典的种子区域生长分割 DeepSeeded方法通过级联深度学习架构增强细胞内部和边界信息,并使用欧几里得距离变换进行体素级分类,从而在密集且强度不均匀的显微镜图像体积中分割接触的细胞实例 尽管在密集细胞群的分割上表现出色,但该方法在低信噪比和高细胞密度的显微镜图像上可能仍存在挑战 开发一种能够准确分割密集细胞群的3D显微镜图像的方法,以量化细胞属性并促进生物医学研究的新发现 细菌生物膜中的密集细胞群 计算机视觉 NA 深度学习 级联深度神经网络 3D显微镜图像 合成数据集和两个真实生物膜数据集
7050 2025-03-16
NiSNN-A: Noniterative Spiking Neural Network With Attention With Application to Motor Imagery EEG Classification
2025-Mar-14, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文提出了一种结合注意力机制的非迭代脉冲神经网络(NiSNN-A),用于运动想象(MI)脑电图(EEG)分类,旨在提高精度并降低能耗 提出了一种非迭代漏积分发放(NiLIF)神经元模型,解决了传统SNN在长时间步中使用迭代LIF神经元的梯度问题,并引入了基于序列的注意力机制来优化特征图 尽管NiSNN-A在精度和能效上有所提升,但其在EEG分类任务中的表现仍需进一步验证和优化 提高运动想象(MI)脑电图(EEG)分类的精度并降低能耗 运动想象(MI)脑电图(EEG)数据 机器学习 NA NA 非迭代脉冲神经网络(NiSNN-A) 脑电图(EEG)数据 两个MI EEG数据集(OpenBMI和BCIC IV 2a)
7051 2025-03-16
Fast and reliable probabilistic reflectometry inversion with prior-amortized neural posterior estimation
2025-Mar-14, Science advances IF:11.7Q1
研究论文 本文提出了一种新的概率深度学习方法,用于快速可靠地从X射线或中子散射测量中重建薄膜和多层结构 提出了一种名为PANPE(先验摊销神经后验估计)的新方法,结合了基于模拟的推理和自适应先验,能够在几秒钟内识别所有现实结构 未明确提及具体限制 提高从反射测量数据中重建薄膜和多层结构的可靠性和计算效率 薄膜和多层结构 物理学 NA 反射测量 PANPE(先验摊销神经后验估计) X射线或中子散射测量数据 未明确提及具体样本数量
7052 2025-03-16
The effect of cryopreservation on enamel microcracks - A μCT analysis using a deep learning algorithm
2025-Mar-13, Cryobiology IF:2.3Q3
研究论文 本研究通过μCT分析和深度学习算法,探讨了冷冻保存对牙釉质微裂纹的影响 首次使用深度学习算法对冷冻保存引起的牙釉质裂纹进行直接评估,并提出了可扩展且精确的量化方法 研究样本量较小,仅涉及5颗牙齿,且未探讨裂纹对牙齿功能的具体影响 研究冷冻保存对牙釉质微裂纹的影响 牙釉质微裂纹 计算机视觉 NA μCT分析 U-Net 图像 5颗牙齿
7053 2025-03-16
Deep learning models in classifying primary bone tumors and bone infections based on radiographs
2025-Mar-13, NPJ precision oncology IF:6.8Q1
研究论文 本研究开发了一种集成深度学习框架,用于基于X光片准确区分原发性骨肿瘤和骨感染 提出了一种集成深度学习框架,结合多中心X光片和广泛的临床特征,提高了诊断准确性 研究依赖于特定数据集,可能无法完全推广到其他医疗环境 提高原发性骨肿瘤和骨感染的诊断精度 原发性骨肿瘤和骨感染 计算机视觉 骨肿瘤 深度学习 EfficientNet B3, EfficientNet B4, Vision Transformer, Swin Transformers X光片 外部数据集423例,内部数据集1044例(训练集)、354例(测试集)、171例(验证集)
7054 2025-03-16
AI in Histopathology Explorer for comprehensive analysis of the evolving AI landscape in histopathology
2025-Mar-12, NPJ digital medicine IF:12.4Q1
研究论文 本文介绍了AI在组织病理学中的应用探索器(HistoPathExplorer),一个实时在线资源,用于评估AI在特定临床任务中的应用现状、分析其性能并探索影响其转化为实践的因素 开发了一个交互式仪表板HistoPathExplorer,提供了一个实时在线资源,用于评估AI在组织病理学中的应用现状,并定义了一个质量指数来评估已发表AI方法的全面性 未明确提及具体的研究限制 深入了解应用于组织病理学数据的深度学习算法方法,并评估其在不同任务中的表现,以开发下一代AI技术 组织病理学数据 数字病理学 癌症 深度学习算法 NA 组织病理学数据 NA
7055 2025-03-16
Image classification-driven speech disorder detection using deep learning technique
2025-Mar-06, SLAS technology IF:2.5Q3
研究论文 本文提出了一种基于图像分类的自动语音障碍检测模型,通过Mel-Spectrogram分类来识别多种语音障碍 使用增强的LEVIT变换器进行特征提取,并采用集成学习方法进行分类,同时利用量化感知训练减少计算资源,提供模型可解释性 模型在多语言和多方言环境下的应用需要进一步研究,以提升实时临床和远程医疗部署的适应性 开发一种自动化的语音障碍检测模型,以提高诊断的准确性和效率 语音障碍患者 自然语言处理 语音障碍 小波变换(WT)杂交技术,量化感知训练(QAT) LEVIT变换器,集成学习(EL) 语音样本生成的Mel-Spectrogram图像 使用了VOICED和LANNA数据集
7056 2025-03-16
Advanced NLP-driven predictive modeling for tailored treatment strategies in gastrointestinal cancer
2025-Mar-06, SLAS technology IF:2.5Q3
研究论文 本研究旨在开发一种基于自然语言处理(NLP)的预测建模框架,用于胃肠道癌症的个性化治疗策略 提出了Resilient Adam Algorithm驱动的Versatile Long-Short Term Memory (RAA-VLSTM)模型,用于分析临床数据,并通过RAA优化算法提高训练效率 研究依赖于电子健康记录(EHRs)的质量和完整性,可能受到数据偏差的影响 开发一种先进的NLP驱动的预测建模框架,以改善胃肠道癌症的个性化治疗策略 胃肠道癌症患者 自然语言处理 胃肠道癌症 自然语言处理(NLP),深度学习 RAA-VLSTM 电子健康记录(EHRs) 来自多个医疗中心的广泛电子健康记录(EHRs)
7057 2025-03-16
Fine-Tuned Machine Learning Classifiers for Diagnosing Parkinson's Disease Using Vocal Characteristics: A Comparative Analysis
2025-Mar-06, Diagnostics (Basel, Switzerland)
研究论文 本文通过优化机器学习算法,利用声音特征对帕金森病进行分类,旨在提供一种非侵入性且易于访问的诊断工具 结合先进的特征选择技术和超参数优化策略,提升基于声音特征的机器学习诊断帕金森病的性能,特别是堆叠模型通过网格搜索调优表现出最佳性能 未来研究可关注深度学习方法和时间特征整合,以进一步提高诊断准确性和临床应用的扩展性 评估优化后的机器学习算法在基于声音特征分类帕金森病中的有效性 188名帕金森病患者和64名对照者的声音样本 机器学习 帕金森病 贝叶斯优化、网格搜索、随机搜索 SVM、k-NN、DT、NN、集成模型、堆叠模型 声音数据 252人(188名患者和64名对照者)
7058 2025-03-16
Secure Hybrid Deep Learning for MRI-Based Brain Tumor Detection in Smart Medical IoT Systems
2025-Mar-06, Diagnostics (Basel, Switzerland)
研究论文 本文提出了一种结合混沌和Arnold加密技术与混合深度学习模型的自动化MRI图像分类系统,用于智能医疗物联网系统中的脑肿瘤检测 结合混沌和Arnold加密技术,确保MRI图像的机密性,同时不降低脑肿瘤分类的准确性 未提及具体的研究局限性 开发一种安全且自动化的MRI图像分类系统,用于脑肿瘤检测 MRI图像 计算机视觉 脑肿瘤 混沌加密、Arnold加密 VGG16、深度神经网络(DNN) 图像 未提及具体样本数量
7059 2025-03-16
Exploring the Role of Artificial Intelligence (AI)-Driven Training in Laparoscopic Suturing: A Systematic Review of Skills Mastery, Retention, and Clinical Performance in Surgical Education
2025-Mar-06, Healthcare (Basel, Switzerland)
系统综述 本文系统综述了人工智能(AI)驱动的培训系统在腹腔镜缝合技能掌握、长期保持和临床表现方面的作用 本文创新性地评估了AI在腹腔镜缝合培训中的应用,特别是深度学习、动作捕捉和视频分割等机器学习技术的优势和局限性 AI在准确性、可扩展性和集成方面仍存在局限性,需要进一步的大规模高质量研究来完善这些工具 评估AI在腹腔镜缝合技能获取、长期保持和临床表现方面的影响 腹腔镜缝合培训中的机器学习技术 机器学习 NA 深度学习、动作捕捉、视频分割 NA 视频、动作数据 33项研究符合纳入标准
7060 2025-03-16
Comparing and Combining Artificial Intelligence and Spectral/Statistical Approaches for Elevating Prostate Cancer Assessment in a Biparametric MRI: A Pilot Study
2025-Mar-05, Diagnostics (Basel, Switzerland)
研究论文 本研究比较并结合了人工智能和光谱/统计方法,以提升双参数MRI中前列腺癌评估的准确性 首次将自监督网格网络(Z-SSMNet)与光谱/统计方法结合,用于前列腺癌评估 样本量较小(42名患者),且深度学习/人工智能方法表现不如光谱/统计方法 评估和改进光谱/统计方法,结合人工智能提升前列腺癌评估准确性 前列腺癌患者 数字病理学 前列腺癌 深度学习(DL),光谱/统计方法 Z-SSMNet(自监督网格网络) MRI图像 42名患者
回到顶部