本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7161 | 2025-02-06 |
High-resolution deep learning reconstruction for coronary CTA: compared efficacy of stenosis evaluation with other methods at in vitro and in vivo studies
2025-Feb-04, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11376-9
PMID:39903239
|
研究论文 | 本研究比较了混合型迭代重建(IR)、基于模型的迭代重建(MBIR)、深度学习重建(DLR)和高分辨率深度学习重建(HR-DLR)在冠状动脉CT血管造影(CCTA)中对冠状动脉狭窄评估的效果 | 首次在体外和体内研究中直接比较了HR-DLR与其他重建方法在冠状动脉狭窄评估中的效果 | 研究样本量较小,仅包括31名患者 | 比较不同重建方法在冠状动脉狭窄评估中的效果 | 冠状动脉狭窄评估 | 医学影像 | 心血管疾病 | CT扫描 | 深度学习重建(DLR) | CT图像 | 31名患者和三根不同直径的血管模型 |
7162 | 2025-02-06 |
Age-stratified deep learning model for thyroid tumor classification: a multicenter diagnostic study
2025-Feb-04, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11386-7
PMID:39903238
|
研究论文 | 本研究开发了一种基于年龄分层的深度学习模型(ASMCNet),用于甲状腺结节的分类,并探讨了年龄分层对模型准确性的影响 | 首次将年龄分层引入深度学习模型,用于甲状腺结节的分类,并验证了其提高诊断准确性的潜力 | 研究为回顾性研究,可能存在数据偏差,且未在更大规模的多中心数据集中验证模型的泛化能力 | 探讨年龄分层对甲状腺结节分类模型准确性的影响,并评估模型在临床诊断中的辅助作用 | 甲状腺结节患者 | 数字病理 | 甲状腺癌 | 深度学习 | ASMCNet | 超声图像 | 5934名患者的10391张超声图像 |
7163 | 2025-02-06 |
Deep-ELA: Deep Exploratory Landscape Analysis with Self-Supervised Pretrained Transformers for Single- and Multi-Objective Continuous Optimization Problems
2025-Feb-04, Evolutionary computation
IF:4.6Q1
DOI:10.1162/evco_a_00367
PMID:39903851
|
研究论文 | 本文提出了一种结合深度学习和探索性景观分析(ELA)特征的混合方法Deep-ELA,用于单目标和多目标连续优化问题的分析 | 提出了一种结合深度学习和ELA特征的混合方法,解决了传统ELA特征在多目标优化问题中的局限性,并减少了深度学习对大量标注数据的依赖 | 需要预训练大量随机生成的优化问题,可能在实际应用中存在计算资源消耗较大的问题 | 改进单目标和多目标连续优化问题的分析方法 | 单目标和多目标连续优化问题 | 机器学习 | NA | 深度学习,探索性景观分析(ELA) | Transformer | 数值特征 | 数百万个随机生成的优化问题 |
7164 | 2025-02-06 |
A novel cross-modal data augmentation method based on contrastive unpaired translation network for kidney segmentation in ultrasound imaging
2025-Feb-04, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17663
PMID:39904615
|
研究论文 | 本文提出了一种基于对比无配对翻译网络的新型跨模态数据增强方法,用于提高基于深度学习的肾脏超声图像分割性能 | 采用对比无配对翻译网络(CUT)从标记的腹部CT数据和无标记的肾脏超声图像中低成本获取模拟的标记肾脏超声图像,并提出了一种实例加权训练策略 | 需要依赖标记的CT数据和无标记的超声图像,且模拟图像的质量可能影响最终分割效果 | 提高基于深度学习的肾脏超声图像分割模型的准确性和泛化能力 | 肾脏超声图像 | 计算机视觉 | 肾脏疾病 | 对比无配对翻译网络(CUT) | U-Net | 图像 | 4418张标记的CT切片和4594张无标记的超声图像用于生成网络训练,4594张模拟和100张真实的肾脏超声图像用于分割网络训练,20张用于验证,169张用于测试 |
7165 | 2025-02-06 |
Patient- and fraction-specific magnetic resonance volume reconstruction from orthogonal images with generative adversarial networks
2025-Feb-04, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17668
PMID:39904621
|
研究论文 | 本文开发了一种基于生成对抗网络(GAN)的2D到3D条件模型,用于从正交2D MR图像重建合成3D MR体积,以实现在线剂量适应 | 采用患者和分次特定的微调工作流程,提高了在有限数据情况下的模型准确性 | 需要更多的患者数据来进一步验证模型的泛化能力 | 开发个性化深度学习模型,用于从2D MR图像重建3D MR体积 | 43名患者的2473个3D MR体积 | 计算机视觉 | 前列腺癌 | 生成对抗网络(GAN) | 条件生成对抗网络(GAN) | 图像 | 43名患者的2473个3D MR体积 |
7166 | 2025-02-06 |
The Dipeptidyl Peptidase-4 Inhibitor Saxagliptin as a Candidate Treatment for Disorders of Consciousness: A Deep Learning and Retrospective Clinical Analysis
2025-Feb-04, Neurocritical care
IF:3.1Q2
DOI:10.1007/s12028-025-02217-0
PMID:39904872
|
研究论文 | 本研究利用深度学习模型筛选FDA批准的药物,发现二肽基肽酶-4抑制剂沙格列汀可能作为治疗意识障碍的新药物,并通过回顾性临床分析验证其效果 | 首次使用深度学习模型预测现有药物的觉醒效果,并发现沙格列汀在急性及长期意识障碍中的潜在治疗作用 | 研究为回顾性分析,需进一步的前瞻性临床试验验证沙格列汀的疗效和安全性 | 探索现有FDA批准药物在治疗意识障碍中的新用途 | 4047名因创伤、血管性或缺氧性脑损伤导致的昏迷患者 | 机器学习 | 意识障碍 | 深度学习 | 深度学习模型 | 临床数据 | 4047名患者 |
7167 | 2025-02-06 |
Comparative Analysis of U-Net and U-Net3 + for Retinal Exudate Segmentation: Performance Evaluation Across Regions
2025-Feb-04, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01419-4
PMID:39904940
|
研究论文 | 本研究比较了U-Net和U-Net3+在视网膜渗出物分割中的性能,评估了它们在不同区域的检测效果 | 首次在不同视网膜区域(如血管周围与血管外区域、黄斑周围与黄斑外区域)对U-Net和U-Net3+模型进行了详细的性能评估 | 研究仅基于U-Net3+模型的结果进行评估,未进一步探讨其他深度学习模型的表现 | 评估深度学习模型在视网膜渗出物检测中的性能,以提高糖尿病视网膜病变的诊断准确性和效率 | 糖尿病视网膜病变患者的眼底图像 | 计算机视觉 | 糖尿病视网膜病变 | 深度学习 | U-Net, U-Net3+ | 图像 | NA |
7168 | 2025-02-06 |
Preoperatively Predicting PIT1 Expression in Pituitary Adenomas Using Habitat, Intra-tumoral and Peri-tumoral Radiomics Based on MRI
2025-Feb-04, Journal of imaging informatics in medicine
DOI:10.1007/s10278-024-01376-4
PMID:39904941
|
研究论文 | 本研究旨在利用基于MRI的生境、瘤内和瘤周放射组学模型预测垂体腺瘤中垂体转录因子1(PIT1)的表达 | 创新点在于结合了生境、瘤内和瘤周放射组学特征,并构建了深度学习放射组学列线图(DLRN)用于个体预测 | 研究样本量相对较小,且为回顾性研究,可能存在选择偏倚 | 预测垂体腺瘤中PIT1的表达 | 129名垂体腺瘤患者 | 数字病理学 | 垂体腺瘤 | MRI | logistic regression (LR), support vector machines (SVM), multilayer perceptron (MLP), deep learning radiomics nomogram (DLRN) | 图像 | 129名患者(训练集103名,测试集26名) |
7169 | 2025-02-06 |
Learning Phenotype Associated Signature in Spatial Transcriptomics with PASSAGE
2025-Feb-04, Small methods
IF:10.7Q1
DOI:10.1002/smtd.202401451
PMID:39905872
|
研究论文 | 本文介绍了一种名为PASSAGE的深度学习框架,用于在空间转录组学中有效表征与表型相关的特征 | PASSAGE框架通过图嵌入方法,能够在多个异质性空间切片中有效表征与表型相关的特征,超越了传统的无监督方法 | NA | 研究目的是开发一种能够利用样本特征(如生理/病理状态)来识别空间转录组学中表型相关特征的计算工具 | 空间转录组学数据 | 数字病理学 | NA | 空间转录组学 | 深度学习 | 空间转录组数据 | NA |
7170 | 2025-02-06 |
Online and Cross-User Finger Movement Pattern Recognition by Decoding Neural Drive Information from Surface Electromyogram
2025-Feb-04, International journal of neural systems
IF:6.6Q1
DOI:10.1142/S0129065725500145
PMID:39907499
|
研究论文 | 本文提出了一种新的肌电识别方法,通过结合神经解码方法和无监督域适应学习,解决了跨用户变异性导致的肌电控制系统性能下降问题 | 提出了一种结合神经解码和无监督域适应学习的新方法,能够在细粒度运动单元(MU)水平上进行肌电模式识别 | NA | 解决跨用户变异性对肌电控制系统性能的影响,提高肌电模式识别的准确性和鲁棒性 | 手指运动模式 | 神经接口与假肢控制 | NA | 表面肌电图(SEMG)分解 | 深度学习模型 | 表面肌电图(SEMG)信号 | 15名受试者的手指伸肌SEMG信号 |
7171 | 2025-02-06 |
Functional feature extraction and validation from twelve-lead electrocardiograms to identify atrial fibrillation
2025-Feb-02, Communications medicine
IF:5.4Q1
DOI:10.1038/s43856-025-00749-2
PMID:39894874
|
研究论文 | 本文提出了一种非参数特征提取方法,用于识别与心房颤动发展相关的特征 | 与深度学习方法相比,本文提出的特征直观且能提供个体水平上心房颤动发展前的纵向心电图变化洞察 | 方法仍需要进一步验证以确认其广泛适用性 | 识别与心房颤动发展相关的心电图特征 | 慢性肾功能不全队列研究中的参与者 | 机器学习 | 心血管疾病 | 功能主成分分析 | Cox比例风险模型 | 心电图数据 | 慢性肾功能不全队列研究中的参与者(2003-2008年和2013-2015年) |
7172 | 2025-02-06 |
Deep Learning and Numerical Analysis for Bladder Outflow Obstruction and Detrusor Underactivity Diagnosis in Men: A Novel Urodynamic Evaluation Scheme
2025-Feb, Neurourology and urodynamics
IF:1.8Q3
DOI:10.1002/nau.25665
PMID:39803869
|
研究论文 | 本研究通过深度学习结合短时傅里叶变换算法,自动识别和诊断男性下尿路症状患者的膀胱出口梗阻和逼尿肌活动不足 | 首次将深度卷积神经网络与短时傅里叶变换算法结合,用于男性膀胱出口梗阻和逼尿肌活动不足的自动诊断 | 研究仅基于两家医院的回顾性数据,外部验证集的样本量相对较小 | 开发一种自动诊断男性膀胱出口梗阻和逼尿肌活动不足的方法 | 1949名接受尿动力学检查的男性患者 | 数字病理学 | 泌尿系统疾病 | 短时傅里叶变换算法 | 深度卷积神经网络 | 五通道尿动力学数据(包括尿流率、尿量、膀胱内压、腹压和逼尿肌压力) | 1949名男性患者(1725名来自武汉大学人民医院,224名来自武汉市中心医院) |
7173 | 2025-02-06 |
Explainable deep learning and virtual evolution identifies antimicrobial peptides with activity against multidrug-resistant human pathogens
2025-Feb, Nature microbiology
IF:20.5Q1
DOI:10.1038/s41564-024-01907-3
PMID:39825096
|
研究论文 | 本文开发了一种基于人工智能的可解释深度学习模型EvoGradient,用于预测抗菌肽(AMPs)的效力,并通过虚拟进化生成更有效的AMPs | 提出了EvoGradient模型,结合可解释深度学习和虚拟进化技术,自动识别和优化抗菌肽 | 研究仅针对人类口腔低丰度细菌编码的肽,未涵盖其他来源的抗菌肽 | 开发一种AI模型,用于识别和优化具有抗多重耐药病原体活性的抗菌肽 | 抗菌肽(AMPs)及其对多重耐药病原体的活性 | 机器学习 | 多重耐药感染 | 深度学习,虚拟进化 | EvoGradient | 肽序列数据 | 32种肽通过虚拟进化优化,其中6种合成并测试 |
7174 | 2025-02-06 |
CoReSi: a GPU-based software for Compton camera reconstruction and simulation in collimator-free SPECT
2025-Jan-31, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/adaacc
PMID:39813793
|
研究论文 | 本文介绍了CoReSi,一个基于GPU的Compton相机重建和模拟软件,主要用于医学成像和近场实验中的3D图像重建 | CoReSi是首个开源的Compton相机重建软件,采用Python和PyTorch实现,支持多线程和深度学习算法的接口 | 目前尚无其他开源Compton相机重建软件,除了主要用于天文学的MEGAlib | 开发一个开源的Compton相机重建和模拟软件,以促进不同领域的研究 | Compton相机的图像重建和模拟 | 医学成像 | NA | Compton相机成像 | NA | 3D图像 | NA |
7175 | 2025-02-06 |
Advancing forecasting capabilities: A contrastive learning model for forecasting tropical cyclone rapid intensification
2025-Jan-28, Proceedings of the National Academy of Sciences of the United States of America
IF:9.4Q1
DOI:10.1073/pnas.2415501122
PMID:39835899
|
研究论文 | 本文提出了一种基于对比学习的热带气旋快速增强预测模型,以提高预测准确性 | 该模型通过解决样本不平衡问题并结合热带气旋结构特征,显著提高了预测性能 | 模型仅在西北太平洋2020至2021年的1149个热带气旋周期上进行了测试,可能需要更多数据验证其泛化能力 | 提高热带气旋快速增强的预测能力 | 热带气旋快速增强事件 | 机器学习 | NA | 对比学习 | RITCF-contrastive | 卫星红外图像、大气和海洋数据 | 1149个热带气旋周期 |
7176 | 2025-02-06 |
Inferring disease progression stages in single-cell transcriptomics using a weakly supervised deep learning approach
2025-Jan-22, Genome research
IF:6.2Q1
DOI:10.1101/gr.278812.123
PMID:39622637
|
研究论文 | 本文提出了一种新的深度学习方法scIDST,用于推断单细胞转录组学中的疾病进展阶段 | scIDST方法通过弱监督框架推断单个细胞的疾病进展水平,解决了患者来源组织中细胞异质性问题 | NA | 解决单细胞转录组学中细胞异质性问题,识别与疾病相关的分子特征 | 患者来源组织中的单个细胞 | 单细胞转录组学 | NA | 单细胞/核基因组测序 | 深度学习 | 单细胞转录组数据 | NA |
7177 | 2025-02-06 |
Machine learning models for predicting postoperative peritoneal metastasis after hepatocellular carcinoma rupture: a multicenter cohort study in China
2025-Jan-17, The oncologist
DOI:10.1093/oncolo/oyae341
PMID:39832130
|
研究论文 | 本研究利用机器学习模型预测肝细胞癌破裂后腹膜转移的发生,通过多中心队列研究评估了不同模型的性能 | 首次比较了包括深度学习在内的多种机器学习模型在预测肝细胞癌破裂后腹膜转移中的表现,并确定了深度学习模型的最优性能 | 研究样本仅来自中国的7个医疗中心,可能限制了结果的普遍性 | 预测肝细胞癌破裂后腹膜转移的发生,以改善患者预后 | 522名接受手术的肝细胞癌破裂患者 | 机器学习 | 肝细胞癌 | 机器学习模型训练与评估 | 逻辑回归、支持向量机、分类树、随机森林、深度学习 | 临床数据 | 522名患者,其中78名(14.9%)经历了术后腹膜转移 |
7178 | 2025-02-04 |
Estimating Task-based Performance Bounds for Accelerated MRI Image Reconstruction Methods by Use of Learned-Ideal Observers
2025-Jan-16, ArXiv
PMID:39876930
|
研究论文 | 本文探讨了使用学习理想观察者(CNN-IOs)来估计加速MRI图像重建方法的任务性能界限 | 将卷积神经网络(CNN)近似的理想观察者(CNN-IOs)应用于多线圈磁共振成像(MRI)系统,以建立图像重建的任务性能界限 | 研究仅限于多线圈SENSE MRI系统和深度生成的随机脑模型,可能不适用于其他类型的成像系统或模型 | 设计和优化医学成像系统,特别是加速MRI图像重建方法,以确保诊断信息的完整性 | 多线圈磁共振成像(MRI)系统 | 医学影像 | NA | 卷积神经网络(CNN) | CNN | 图像 | 深度生成的随机脑模型 |
7179 | 2025-02-06 |
Using artificial intelligence and statistics for managing peritoneal metastases from gastrointestinal cancers
2025-Jan-15, Briefings in functional genomics
IF:2.5Q3
DOI:10.1093/bfgp/elae049
PMID:39736152
|
研究论文 | 本研究探讨了人工智能和统计方法在分析和处理由胃肠道癌症引起的腹膜转移(PM)中的各种应用 | 通过系统文献综述,发现AI方法,特别是深度学习,在预测准确性上优于传统统计方法 | 样本量是影响模型预测准确性的主要因素,需要跨机构合作以标准化数据收集方法 | 研究人工智能和统计方法在胃肠道癌症引起的腹膜转移管理中的应用 | 腹膜转移(PM)患者 | 机器学习 | 胃肠道癌症 | 传统机器学习和深度学习模型,生物统计学和逻辑模型 | 深度学习(DL)和传统机器学习(ML) | 文献数据 | 近30篇符合预定义标准的文章 |
7180 | 2025-02-06 |
A Vessel Bifurcation Landmark Pair Dataset for Abdominal CT Deformable Image Registration (DIR) Validation
2025-Jan-15, ArXiv
PMID:39876932
|
研究论文 | 本文介绍了一种用于腹部CT可变形图像配准(DIR)验证的首个基准数据集,包含大量高精度的血管分叉标志点对 | 首次提供了用于腹部CT DIR验证的基准数据集,包含大量高精度的血管分叉标志点对 | 数据集仅包含30名患者的腹部CT图像,样本量相对较小 | 支持未来DIR算法的开发与验证 | 腹部CT图像中的血管分叉标志点对 | 数字病理学 | NA | 深度学习模型 | NA | CT图像 | 30名患者的腹部CT图像,共1895个标志点对 |