本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
701 | 2025-05-21 |
Active learning of enhancers and silencers in the developing neural retina
2025-Jan-15, Cell systems
IF:9.0Q1
DOI:10.1016/j.cels.2024.12.004
PMID:39778579
|
研究论文 | 本文开发了一种主动学习方法,用于训练能够区分由光感受器转录因子CRX结合位点组成的增强子和沉默子的模型 | 采用主动学习策略结合合成生物学和不确定性采样,迭代训练模型,以区分具有相同序列但功能相反的CRX位点 | 模型主要针对CRX结合位点,可能不适用于其他转录因子的调控元件 | 研究顺式调控元件的功能区分,特别是在不同背景下转录因子的激活或抑制转录机制 | 光感受器转录因子CRX的结合位点 | 机器学习 | NA | 主动学习、合成生物学、大规模并行报告基因检测 | 深度学习模型 | 基因组序列 | 几乎所有基因组中结合的CRX位点 |
702 | 2025-05-21 |
Optimizing Corn Tar Spot Measurement: A Deep Learning Approach Using Red-Green-Blue Imaging and the Stromata Contour Detection Algorithm for Leaf-Level Disease Severity Analysis
2025-Jan, Plant disease
IF:4.4Q1
DOI:10.1094/PDIS-12-23-2702-RE
PMID:39160128
|
research paper | 本文提出了一种名为SCDA v2的深度学习算法,用于优化玉米焦斑病的叶片级病害严重程度分析 | SCDA v2解决了SCDA v1的局限性,无需经验性地搜索最优决策输入参数,同时实现了更高且一致的焦斑病检测准确率 | NA | 优化玉米焦斑病的测量方法,提高病害监测和管理的效率 | 玉米叶片上的焦斑病 | computer vision | plant disease | RGB imaging, deep learning | CNN | image | 来自田间(低、中、高冠层)和温室条件下不同环境的玉米叶片RGB图像数据集 |
703 | 2025-05-21 |
Generative Adversarial Network With Robust Discriminator Through Multi-Task Learning for Low-Dose CT Denoising
2025-Jan, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2024.3449647
PMID:39186436
|
研究论文 | 提出一种通过多任务学习增强判别器鲁棒性的生成对抗网络(GAN),用于低剂量CT图像去噪 | 1) 提出多任务学习的GAN判别器同时执行三个视觉任务;2) 引入恢复一致性(RC)和无差异抑制(NDS)机制提升判别器表征能力;3) 在生成器中加入Res-FFT-Conv模块联合利用频域和空域信息 | 未明确说明模型在其他CT领域的泛化能力测试细节 | 解决低剂量CT图像去噪中视觉不一致、多指标性能不足及跨域鲁棒性等问题 | 低剂量CT(LDCT)图像 | 计算机视觉 | NA | 生成对抗网络(GAN) | GAN(含Res-FFT-Conv模块) | CT图像 | 未明确说明具体样本量(涉及两项去噪任务及放射科医生视觉评分) |
704 | 2025-05-21 |
Federated Learning in Glaucoma: A Comprehensive Review and Future Perspectives
2025 Jan-Feb, Ophthalmology. Glaucoma
DOI:10.1016/j.ogla.2024.08.004
PMID:39214457
|
review | 本文全面回顾了联邦学习在青光眼筛查中的应用,并探讨了其未来前景 | 联邦学习提供了一种在不集中敏感患者数据的情况下进行协作模型开发的方法,解决了隐私和监管问题 | 创建集中式数据存储库受到数据共享、患者隐私、法规遵从性和知识产权等问题的阻碍 | 开发用于青光眼筛查的稳健人工智能模型 | 青光眼患者及其影像数据 | digital pathology | glaucoma | federated learning | deep learning | medical imaging | NA |
705 | 2025-05-21 |
Derivative-Guided Dual-Attention Mechanisms in Patch Transformer for Efficient Automated Recognition of Auditory Brainstem Response Latency
2025, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
IF:4.8Q1
DOI:10.1109/TNSRE.2025.3558730
PMID:40198282
|
研究论文 | 本研究提出了一种名为Patch-DAT的新型深度学习模型,用于自动识别听觉脑干反应(ABR)波I、III和V的潜伏期 | 引入了基于导数引导的双注意力机制和重叠分块策略,以更好地捕捉局部时间模式和全局依赖关系 | 未来工作需要扩展数据集多样性和提高模型可解释性 | 开发高效、轻量级且可泛化的自动识别ABR波潜伏期的深度学习模型 | 听觉脑干反应(ABR)波I、III和V的潜伏期 | 机器学习 | NA | 深度学习 | Transformer | 时间序列数据 | 来自两家医院的大规模多样化数据集 |
706 | 2025-05-21 |
Rapid response to fast viral evolution using AlphaFold 3-assisted topological deep learning
2025, Virus evolution
IF:5.5Q1
DOI:10.1093/ve/veaf026
PMID:40352163
|
研究论文 | 提出了一种结合AlphaFold 3和多任务拓扑拉普拉斯策略的方法,用于快速响应病毒的快速进化 | 结合AlphaFold 3和多任务拓扑拉普拉斯策略,提高了对病毒突变影响的预测能力 | 性能相比使用实验结构略有下降,Pearson相关系数平均降低1.1%,均方根误差平均增加9.3% | 快速响应病毒的快速进化,提高病毒跟踪、诊断和抗体设计的效率 | SARS-CoV-2病毒及其突变 | 机器学习 | 传染病 | 拓扑深度学习(TDL)、深度突变扫描(DMS) | 多任务拓扑拉普拉斯(MT-TopLap) | 蛋白质-蛋白质相互作用(PPI)复合物结构数据 | 四个实验性DMS数据集,包括SARS-CoV-2刺突蛋白受体结合域(RBD)和人类血管紧张素转换酶-2(ACE2)复合物 |
707 | 2025-05-21 |
Advancements in AI-driven drug sensitivity testing research
2025, Frontiers in cellular and infection microbiology
IF:4.6Q1
DOI:10.3389/fcimb.2025.1560569
PMID:40384974
|
综述 | 本文综述了人工智能在药物敏感性测试和病原体耐药性检测中的研究进展及其应用前景 | 强调了人工智能和机器学习在预测药物敏感性测试和病原体耐药性中的创新应用 | 未提及具体的技术实施细节和实验验证结果 | 探讨人工智能技术在药物敏感性测试和病原体耐药性预测中的应用,以减少抗生素滥用并提高感染患者的治疗效果 | 病原体的抗生素敏感性测试和耐药性检测 | 机器学习 | 抗菌素耐药性 | Machine Learning(ML)和Deep Learning(DL) | NA | 影像和实验室数据 | NA |
708 | 2025-05-21 |
Advancements in deep learning for early diagnosis of Alzheimer's disease using multimodal neuroimaging: challenges and future directions
2025, Frontiers in neuroinformatics
IF:2.5Q3
DOI:10.3389/fninf.2025.1557177
PMID:40385089
|
综述 | 本文综述了深度学习在多模态神经影像学中用于阿尔茨海默病早期诊断的最新进展、挑战及未来方向 | 整合多模态神经影像数据,应用CNN、RNN和Transformer等深度学习模型提高诊断准确性和预测疾病进展 | 数据异质性、样本量小、跨人群泛化性有限以及临床转化中的可解释性和伦理问题 | 探讨深度学习在阿尔茨海默病早期诊断中的应用潜力及面临的挑战 | 阿尔茨海默病的多模态神经影像数据 | 数字病理学 | 老年病 | 多模态神经影像分析 | CNN, RNN, Transformer | 影像 | NA |
709 | 2025-05-21 |
Automatic diagnosis of extraocular muscle palsy based on machine learning and diplopia images
2025, International journal of ophthalmology
IF:1.9Q2
DOI:10.18240/ijo.2025.05.01
PMID:40385124
|
研究论文 | 本研究开发了基于机器学习和复视图像的自动诊断模型,用于诊断眼外肌麻痹 | 首次将多种机器学习算法(包括深度学习)应用于复视图像的自动诊断,并与临床医生诊断结果进行一致性比较 | 研究为回顾性研究,未进行前瞻性验证 | 开发自动诊断眼外肌麻痹的机器学习模型 | 3244例患者的复视图像和医疗记录 | 数字病理 | 眼外肌麻痹 | 计算机化复视测试 | LR, DT, SVM, XGBoost, DL | 图像 | 3244例(训练集2757例,测试集487例) |
710 | 2025-05-21 |
Multimodal deep learning model for prediction of prognosis in central nervous system inflammation
2025, Brain communications
IF:4.1Q2
DOI:10.1093/braincomms/fcaf179
PMID:40385378
|
研究论文 | 开发了一种多模态深度学习模型,整合临床特征和脑部MRI数据,以提高中枢神经系统炎症的早期预后预测 | 首次将临床特征与脑部MRI数据通过多模态深度学习模型结合,用于中枢神经系统炎症的预后预测,并在多种病因组中表现出优越性能 | 研究为回顾性设计,可能存在选择偏差;外部测试集数据量相对较小 | 提高中枢神经系统炎症的早期预后预测准确性 | 中枢神经系统炎症患者 | 数字病理 | 中枢神经系统炎症 | MRI扫描 | 3D CNN | 图像和临床数据 | 内部数据集:291名患者的413张图像;外部数据集:106名患者的210张图像 |
711 | 2025-05-21 |
HD-6mAPred: a hybrid deep learning approach for accurate prediction of N6-methyladenine sites in plant species
2025, PeerJ
IF:2.3Q2
DOI:10.7717/peerj.19463
PMID:40386224
|
research paper | 本文提出了一种名为HD-6mAPred的混合深度学习模型,用于准确预测植物物种中的N6-甲基腺嘌呤(6mA)位点 | 结合了双向门控循环单元(BiGRU)、卷积神经网络(CNN)和注意力机制,以及多种DNA序列编码方案,提高了预测准确性和跨物种泛化能力 | NA | 开发一种稳健的方法来准确预测植物物种中的6mA位点 | 植物物种中的N6-甲基腺嘌呤(6mA)位点 | machine learning | NA | DNA序列编码(one-hot encoding, EIIP, ENAC, NCP) | BiGRU, CNN, attention mechanism | DNA序列 | Rosaceae、水稻和拟南芥数据集 |
712 | 2025-05-21 |
Significance of multi-task deep learning neural networks for diagnosing clinically significant prostate cancer in plain abdominal CT
2025, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2025.1543230
PMID:40386561
|
research paper | 评估多任务深度学习神经网络在腹部CT扫描中诊断临床显著性前列腺癌(csPCa)的有效性 | 首次将多任务深度学习神经网络(基于3DUnet架构)应用于腹部CT扫描的前列腺癌诊断,并开发了诊断列线图 | 样本量相对有限(539例患者),且未与其他影像学方法(如MRI)进行直接比较 | 探索腹部CT扫描结合多任务深度学习模型在前列腺癌早期诊断中的价值 | 临床显著性前列腺癌(csPCa)患者 | digital pathology | prostate cancer | CT扫描 | 3DUnet, ResNet18 | image | 539例患者(461例来自放射科,78例来自核医学科) |
713 | 2025-05-21 |
Intelligent rehabilitation in an aging population: empowering human-machine interaction for hand function rehabilitation through 3D deep learning and point cloud
2025, Frontiers in computational neuroscience
IF:2.1Q3
DOI:10.3389/fncom.2025.1543643
PMID:40386804
|
研究论文 | 本研究提出了一种基于3D深度学习模型的方法,处理激光传感器点云数据,用于人机交互手功能智能康复领域的非接触式手势表面特征分析 | 通过整合手表面点云采集、局部特征提取和维度信息抽象与增强等关键技术,构建了准确的手势表面特征分析系统 | NA | 促进手功能非接触式智能康复技术的发展,提升老年人和康复患者的安全舒适交互方式 | 老年人群体的手功能康复 | 数字病理学 | 老年疾病 | 3D深度学习 | 3D深度学习模型 | 点云数据 | NA |
714 | 2025-05-21 |
Quantitative Spatial Analysis of Chromatin Biomolecular Condensates using Cryo-Electron Tomography
2024-Dec-31, bioRxiv : the preprint server for biology
DOI:10.1101/2024.12.01.626131
PMID:39677698
|
research paper | 本文通过冷冻电子断层扫描技术分析了生化重建的染色质凝聚物的结构,并开发了深度学习分割与新型上下文感知模板匹配相结合的方法来识别凝聚物内密集堆积的分子 | 整合深度学习分割与新型上下文感知模板匹配技术,用于高分辨率可视化染色质凝聚物内部结构 | 方法主要针对生化重建的染色质凝聚物,对于细胞内的某些凝聚物可能适用性有限 | 研究染色质凝聚物的形成和功能机制 | 生化重建的染色质凝聚物及原位天然染色质的凝聚区域 | 生物物理学 | NA | 冷冻电子断层扫描技术(cryo-electron tomography)、深度学习分割、上下文感知模板匹配 | 深度学习 | 图像数据 | NA |
715 | 2025-05-21 |
A Deep Learning Approach for Accurate Discrimination Between Optic Disc Drusen and Papilledema on Fundus Photographs
2024-Dec-01, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society
IF:2.0Q2
DOI:10.1097/WNO.0000000000002223
PMID:39090774
|
research paper | 本研究开发了一种深度学习系统(DLS),用于在眼底照片上准确区分视盘玻璃疣(ODD)和由颅内高压引起的视乳头水肿 | 首次利用深度学习技术在大规模国际多民族人群中实现ODD与视乳头水肿的准确分类,包括对埋藏型ODD与轻中度视乳头水肿的区分 | 研究为回顾性设计,可能影响结果的泛化能力 | 开发并验证一个深度学习系统,用于自动区分视盘玻璃疣和视乳头水肿 | 眼底照片中的视盘玻璃疣和视乳头水肿图像 | digital pathology | ophthalmologic disease | deep learning | DLS | image | 4,508张眼底图像(来自2,180名患者) |
716 | 2025-05-21 |
Interformer: an interaction-aware model for protein-ligand docking and affinity prediction
2024-11-25, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-024-54440-6
PMID:39587070
|
研究论文 | 提出了一种名为Interformer的交互感知模型,用于蛋白质-配体对接和亲和力预测 | 基于Graph-Transformer架构的统一模型,利用交互感知的混合密度网络捕获非共价相互作用,并引入负采样策略以有效校正交互分布 | 未提及具体局限性 | 改进蛋白质-配体对接和亲和力预测的性能 | 蛋白质-配体复合物 | 机器学习 | NA | Graph-Transformer架构、混合密度网络 | Interformer | 蛋白质-配体复合物数据 | 广泛使用的数据集和内部数据集 |
717 | 2025-05-21 |
Whole-cell multi-target single-molecule super-resolution imaging in 3D with microfluidics and a single-objective tilted light sheet
2024-11-24, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-024-54609-z
PMID:39582043
|
研究论文 | 本文介绍了一种名为soTILT3D的平台,用于全细胞多靶点3D单分子超分辨率成像,提高了成像精度和速度 | 开发了一种可操纵、抖动的单目标倾斜光片用于光学切片以减少荧光背景,并结合3D纳米打印微流控系统反射光片到样品中 | NA | 解决全哺乳动物细胞单分子超分辨率成像中的高荧光背景和慢采集速度问题 | 哺乳动物细胞 | 生物成像 | NA | 单分子超分辨率荧光显微镜、微流控技术、深度学习 | NA | 3D图像 | NA |
718 | 2025-05-21 |
ClickGen: Directed exploration of synthesizable chemical space via modular reactions and reinforcement learning
2024-11-22, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-024-54456-y
PMID:39578485
|
研究论文 | 本文介绍了ClickGen,一种利用模块化反应和强化学习生成高合成性分子的深度学习模型 | 结合点击化学和强化学习,确保生成分子具有高多样性、新颖性和强结合倾向 | NA | 开发一种能够生成高合成性分子的AI模型,以加速新药发现 | 化学分子 | 机器学习 | 癌症 | 强化学习 | 深度学习 | 化学结构数据 | 针对三种蛋白质的现有结合物进行验证 |
719 | 2025-05-21 |
In-context learning enables multimodal large language models to classify cancer pathology images
2024-11-21, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-024-51465-9
PMID:39572531
|
研究论文 | 本文探讨了在医学图像分类中使用上下文学习的方法,特别是在癌症病理图像分类中的应用 | 首次系统评估了GPT-4V在医学图像分析中的上下文学习能力,展示了其在无需参数更新的情况下匹配或超越专门训练的网络的能力 | 研究仅限于三种特定的癌症组织病理学任务,且依赖于非领域特定数据训练的模型 | 探索和验证上下文学习在医学图像处理任务中的应用效果 | 结直肠癌组织亚型分类、结肠息肉亚型分类和淋巴结切片中的乳腺肿瘤检测 | 数字病理学 | 结直肠癌、乳腺癌 | 上下文学习 | GPT-4V | 图像 | 少量样本(具体数量未提及) |
720 | 2025-05-21 |
Rapid response to fast viral evolution using AlphaFold 3-assisted topological deep learning
2024-Nov-19, ArXiv
PMID:39606716
|
研究论文 | 提出了一种结合AlphaFold 3和多任务拓扑Laplacian策略的方法,用于快速响应病毒快速进化 | 结合AlphaFold 3和多任务拓扑Laplacian策略,提高了预测病毒突变对结合自由能变化的准确性 | 与使用实验结构相比,Pearson相关系数平均下降1.1%,均方根误差平均增加9.3% | 开发高效计算方法以应对病毒快速进化带来的挑战 | SARS-CoV-2刺突蛋白受体结合域(RBD)和人血管紧张素转换酶-2(ACE2)复合物 | 机器学习 | COVID-19 | 拓扑深度学习(TDL)、深度突变扫描(DMS)、持久Laplacians(PL) | MT-TopLap | 蛋白质-蛋白质相互作用(PPI)复合物结构数据 | 四个实验性DMS数据集和一个SARS-CoV-2 HK.3变体DMS数据集 |