本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
701 | 2025-07-04 |
Deep Learning Reconstruction Combined With Conventional Acceleration Improves Image Quality of 3 T Brain MRI and Does Not Impact Quantitative Diffusion Metrics
2025-Aug-01, Investigative radiology
IF:7.0Q1
DOI:10.1097/RLI.0000000000001158
PMID:39919383
|
研究论文 | 本研究评估了深度学习重建与传统加速技术在3T脑MRI中的结合应用,及其对图像质量和定量扩散指标的影响 | 结合深度学习重建(DRB)与传统加速技术,显著提高了ssEPI DWI序列的图像质量并缩短了采集时间 | 在部分切片中观察到DRB重建序列产生更多伪影,且随着加速程度和DRB应用的增加,ADC值的差异增大 | 评估深度学习重建与传统加速技术结合对3T脑MRI图像质量和定量扩散指标的影响 | 24名患者的脑MRI数据 | 数字病理 | NA | 单次激发平面回波成像(ssEPI)扩散加权成像(DWI) | 深度学习(Deep Resolve Boost, DRB) | MRI图像 | 24名患者 |
702 | 2025-07-04 |
Deep Learning-Based Signal Amplification of T1-Weighted Single-Dose Images Improves Metastasis Detection in Brain MRI
2025-Aug-01, Investigative radiology
IF:7.0Q1
DOI:10.1097/RLI.0000000000001166
PMID:39961132
|
research paper | 本研究探讨了基于深度学习的信号放大技术在单剂量T1加权脑MRI图像中的应用,以提高转移瘤的检测率 | 使用深度学习技术从单剂量T1加权图像生成人工双剂量图像,避免了实际使用双剂量造影剂的风险 | 研究样本量较小(30名参与者),且人工双剂量图像可能增加假阳性发现 | 提高脑转移瘤的检测准确性,同时减少造影剂使用 | 脑转移瘤患者 | digital pathology | brain metastasis | MRI | deep learning | image | 30名参与者(平均年龄58.5±11.8岁,23名女性) |
703 | 2025-07-04 |
Moving Beyond CT Body Composition Analysis: Using Style Transfer for Bringing CT-Based Fully-Automated Body Composition Analysis to T2-Weighted MRI Sequences
2025-Aug-01, Investigative radiology
IF:7.0Q1
DOI:10.1097/RLI.0000000000001162
PMID:39961134
|
研究论文 | 本研究提出了一种利用深度学习技术从T2加权MRI序列中自动进行身体成分分析的方法 | 通过CycleGAN将CT分割映射到合成的MR图像上,并利用nnU-Net V2模型进行3D和2D分割,实现了从CT到MRI的身体成分分析方法的迁移 | 研究中仅使用了30对合成数据对进行初步训练,样本量相对较小 | 开发一种自动化方法,用于从T2加权MRI序列中提取身体成分参数 | 120名患者的T2加权MRI序列(46%为女性,中位年龄56岁) | 数字病理学 | NA | CycleGAN, nnU-Net V2 | CNN(具体为nnU-Net V2的3D和2D版本) | 医学影像(T2加权MRI序列) | 120名患者的MRI数据 |
704 | 2025-07-04 |
Learning-Based Classification of B- and T-Cell Lymphoma on Histopathological Images: A Multicenter Study
2025-Aug, European journal of haematology
IF:2.3Q2
DOI:10.1111/ejh.14433
PMID:40360162
|
研究论文 | 本研究首次探讨了使用深度学习模型在组织病理学图像上对B细胞和T细胞淋巴瘤进行分类的可行性 | 首次在组织病理学图像上应用深度学习模型进行B细胞和T细胞淋巴瘤分类,并整合了卷积块注意力模块(CBAMs)提升模型性能 | 研究仅基于H&E染色切片,未考虑其他免疫组化染色结果 | 提高淋巴瘤分类的诊断精度并减少对人工染色和解释的依赖 | B细胞和T细胞淋巴瘤 | 数字病理学 | 淋巴瘤 | 深度学习 | CNN (Xception, NASNetL, ResNet50, EfficientNet) | 图像 | 1510张H&E染色切片(750例B细胞淋巴瘤,760例T细胞淋巴瘤) |
705 | 2025-07-04 |
New approaches to lesion assessment in multiple sclerosis
2025-Aug-01, Current opinion in neurology
IF:4.1Q2
DOI:10.1097/WCO.0000000000001378
PMID:40377692
|
review | 总结人工智能驱动的病变分割和新型神经影像技术在多发性硬化症(MS)病变识别与表征中的最新进展 | 人工智能尤其是深度学习方法革新了MS病变评估和分割,提高了准确性、可重复性和效率,同时新型神经影像技术如QSM、χ-separation成像和SANDI提供了对病变病理的更深入理解 | NA | 总结人工智能和新型神经影像技术在MS病变评估中的应用及其对临床和研究的潜在影响 | 多发性硬化症(MS)病变 | 数字病理 | 多发性硬化症 | 人工智能驱动的病变分割、定量磁化率成像(QSM)、χ-separation成像、SANDI、PET | 深度学习 | 神经影像数据 | NA |
706 | 2025-07-04 |
Brain age prediction from MRI scans in neurodegenerative diseases
2025-Aug-01, Current opinion in neurology
IF:4.1Q2
DOI:10.1097/WCO.0000000000001383
PMID:40396549
|
review | 本文综述了利用MRI扫描进行大脑年龄估计作为大脑健康生物标志物的应用 | 探讨了大脑年龄估计在神经退行性疾病早期诊断、疾病监测和个性化医疗中的应用 | 实施标准化、人口统计学偏差和可解释性等挑战仍然存在 | 探索大脑年龄估计作为神经退行性疾病的早期检测工具 | 阿尔茨海默病、轻度认知障碍(MCI)和帕金森病患者 | 数字病理学 | 神经退行性疾病 | MRI扫描 | 深度学习 | 图像 | NA |
707 | 2025-07-04 |
A Robust Residual Three-dimensional Convolutional Neural Networks Model for Prediction of Amyloid-β Positivity by Using FDG-PET
2025-Aug-01, Clinical nuclear medicine
IF:9.6Q1
DOI:10.1097/RLU.0000000000005966
PMID:40524364
|
研究论文 | 本研究利用残差3D卷积神经网络(3DCNN)开发了一个稳健的模型,通过FDG-PET预测淀粉样蛋白β阳性 | 利用残差3DCNN模型从FDG-PET图像中学习复杂的3D空间模式,显著减少了对站点协调预处理的依赖 | 样本量相对较小(187名患者用于模型开发,99名患者用于评估),且在不同种族和站点协调水平的数据集上表现存在差异 | 开发一个能够通过FDG-PET预测淀粉样蛋白β阳性的深度学习模型,以辅助阿尔茨海默病的诊断 | 从认知正常到痴呆及其他认知障碍的患者 | 数字病理学 | 阿尔茨海默病 | FDG-PET, T1-weighted MRI, 11 C-Pittsburgh compound B (PiB) PET扫描 | 残差3DCNN | 图像 | 187名患者用于模型开发,99名患者用于评估 |
708 | 2025-07-04 |
Grapes leaf disease dataset for precision agriculture
2025-Aug, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2025.111716
PMID:40599426
|
research paper | 该论文提供了一个包含2,726张高质量葡萄叶病害图像的大型数据集,用于精准农业中的病害检测 | 提供了高质量、精确标注的葡萄叶病害图像数据集,并通过ResNet-18算法验证了数据集的适用性 | 数据集仅来自印度纳西克的葡萄农场,可能无法涵盖所有地理和气候条件下的病害情况 | 旨在通过AI模型提升葡萄病害的自动化检测、分类和预测能力 | 葡萄叶病害图像 | computer vision | 葡萄病害 | 图像采集与标注 | ResNet-18 | image | 2,726张葡萄叶病害图像 |
709 | 2025-07-04 |
Enhancing HF-DL Model Validation for Liver Fibrosis Staging Through Sample Optimisation and Technical Integration
2025-Aug, Liver international : official journal of the International Association for the Study of the Liver
IF:6.0Q1
DOI:10.1111/liv.70214
PMID:40607661
|
comments | 本文对Zhang等人的研究进行了讨论,重点关注了基于高频超声图像的深度学习模型在慢性乙型肝炎患者肝纤维化分期分类中的表现 | 强调了样本优化和技术整合在提高深度学习模型验证效果方面的重要性 | 未提出具体的改进方案或实验验证 | 讨论和优化深度学习模型在肝纤维化分期分类中的应用 | 慢性乙型肝炎患者的肝纤维化分期 | digital pathology | liver disease | high-frequency ultrasound, deep learning | deep learning model | ultrasound images | NA |
710 | 2025-07-04 |
Deep learning on high-density EEG during a cognitive task distinguishes patients with Parkinson's disease from healthy controls
2025-Jul-03, Journal of neural engineering
IF:3.7Q2
DOI:10.1088/1741-2552/ade6a9
PMID:40541235
|
研究论文 | 本研究使用深度学习模型分析高密度脑电图(EEG)数据,通过认知任务区分帕金森病患者与健康对照组 | 首次在认知任务条件下使用高密度EEG数据训练深度学习模型,提高了帕金森病诊断的准确性 | 研究样本量未明确说明,且EEG生物标志物仍处于实验阶段 | 探索认知任务是否能提高基于EEG的帕金森病检测准确性 | 帕金森病患者与健康对照组 | 数字病理学 | 帕金森病 | 高密度EEG | 深度学习模型 | EEG信号 | NA |
711 | 2025-07-04 |
CBH-BDC Enhanced Δ-ML for Predicting the Accurate Standard Enthalpy of Formation
2025-Jul-03, The journal of physical chemistry. A
DOI:10.1021/acs.jpca.5c03134
PMID:40556314
|
research paper | 该论文提出了一种结合CBH-BDC和Δ-ML的方法,用于准确预测标准生成焓(Δ°) | 引入CBH-BDC增强的Δ-ML方法,利用基于连接层次结构片段和BDC的有效且可解释的分子描述符,绕过高级量子计算实现Δ°的准确预测 | BDC参数仅限于特定元素,高精度电子能量计算存在挑战 | 开发一种准确预测标准生成焓(Δ°)的方法 | 464种具有实验Δ°值的物种和QM9数据库中的120,416个稳定有机分子 | 计算化学 | NA | CBH-BDC方法、Δ-ML方法、DFT、CCSD(T) | Δ-ML | 分子描述符 | 464个实验验证物种和120,416个QM9数据库有机分子 |
712 | 2025-07-04 |
Contrast-enhanced image synthesis using latent diffusion model for precise online tumor delineation in MRI-guided adaptive radiotherapy for brain metastases
2025-Jul-03, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ade845
PMID:40562071
|
研究论文 | 本研究开发了一种基于ControlNet耦合的潜在扩散模型(CTN-LDM)的方法,用于从在线T2加权或FLAIR图像生成高质量的合成T1CE图像,以提高脑转移瘤在线自适应放疗中的肿瘤勾画精度 | 结合了ControlNet耦合的潜在扩散模型、个性化迁移学习策略和去噪扩散隐式模型反演方法,显著提高了合成T1CE图像的质量和肿瘤勾画的准确性 | 研究仅针对大体积脑转移瘤,未涉及其他类型的肿瘤或小体积病灶 | 开发一种合成T1CE图像生成方法,以促进在线自适应脑转移瘤勾画的准确性 | 脑转移瘤患者 | 数字病理 | 脑转移瘤 | MRI | ControlNet-coupled latent diffusion model (CTN-LDM) | MRI图像 | 未明确提及样本数量 |
713 | 2025-07-04 |
Self-supervised learning for low-dose CT image denoising method based on guided image filtering
2025-Jul-03, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ade847
PMID:40562063
|
research paper | 提出了一种基于引导图像滤波的自监督学习方法,用于低剂量CT图像去噪 | 利用引导图像滤波生成伪标签,无需配对数据即可训练网络进行去噪,并在解码器阶段嵌入注意力门机制以提升性能 | 未明确提及具体局限性 | 开发不依赖配对正常剂量CT数据的低剂量CT图像去噪方法 | 低剂量CT图像 | computer vision | NA | 引导图像滤波(GIF),注意力门(AG)机制 | 残差网络 | image | 未明确提及样本数量 |
714 | 2025-07-04 |
Neural networks to estimate multiple sclerosis disability and predict progression using routinely collected healthcare data
2025-Jul-03, Multiple sclerosis (Houndmills, Basingstoke, England)
DOI:10.1177/13524585251347513
PMID:40607660
|
研究论文 | 本研究使用常规收集的医疗数据,通过神经网络算法估计多发性硬化症(MS)相关残疾并预测其进展 | 利用深度学习方法和混合模型(结合生存分析与神经网络预测)来估计和预测MS相关残疾,填补了行政数据集中EDSS不可用的空白 | 研究仅基于意大利坎帕尼亚地区的行政数据,可能限制了结果的普适性 | 利用常规医疗数据改进MS的监测、医疗规划和决策制定 | 多发性硬化症(MS)患者 | 机器学习 | 多发性硬化症 | 深度学习 | 神经网络与混合模型 | 行政医疗数据 | 2015-2021年意大利坎帕尼亚地区的MS患者数据 |
715 | 2025-07-04 |
Developing Nationwide Estimates of Built Environment Quality Characteristics Using Street-View Imagery and Computer Vision
2025-Jul-03, Environmental science & technology
IF:10.8Q1
DOI:10.1021/acs.est.5c00966
PMID:40607680
|
research paper | 利用计算机视觉和街景图像评估美国城市建成环境质量特征 | 首次利用计算机视觉和街景图像在全国范围内评估建成环境质量,并明确处理了社会人口和时间偏差 | 对西班牙裔/拉丁裔和夏威夷原住民或太平洋岛民群体的准确性较低,季节性偏差调整不完全 | 评估建成环境质量特征以支持流行病学研究、城市规划策略和公共卫生干预 | 美国所有城市的建成环境质量 | computer vision | NA | deep learning | CNN | image | 72,516份调查问卷,覆盖1.2亿个街景位置 |
716 | 2025-07-04 |
Deep Learning Discovers New Morphological Features while Predicting Genetic Alterations from Histopathology of Papillary Thyroid Carcinoma
2025-Jul-03, Thyroid : official journal of the American Thyroid Association
IF:5.8Q1
DOI:10.1089/thy.2024.0691
PMID:40607934
|
research paper | 该研究利用深度学习从甲状腺乳头状癌的组织病理学切片中预测基因变异,并发现新的形态学特征 | 使用Vision Transformer模型从常规组织病理学切片中预测基因变异,并识别出与基因变化相关的新形态学标准 | 研究为回顾性设计,需要进一步前瞻性验证 | 探索AI在预测甲状腺乳头状癌基因变异中的应用 | 甲状腺乳头状癌患者 | digital pathology | thyroid cancer | AI-based histopathology analysis | Vision Transformer | image | 662例(TCGA队列496例,Mainz队列166例) |
717 | 2025-07-04 |
Development of a deep learning-based automated diagnostic system (DLADS) for classifying mammographic lesions - a first large-scale multi-institutional clinical trial in Japan
2025-Jul-03, Breast cancer (Tokyo, Japan)
DOI:10.1007/s12282-025-01741-3
PMID:40608200
|
research paper | 开发了一个基于深度学习的自动化诊断系统(DLADS),用于分类乳腺X线摄影病变,并在日本进行了首次大规模多机构临床试验 | 首次为日本女性建立了乳腺X线摄影AI-CADx系统,并在大规模多机构临床试验中验证了其有效性 | 研究为回顾性设计,前瞻性研究尚未完成 | 建立并验证一个针对日本女性的乳腺X线摄影AI-CADx系统 | 日本女性的乳腺X线摄影图像 | digital pathology | breast cancer | AI-CADx | SE-ResNet | image | 20,638张乳腺X线摄影图像,来自11,450名日本女性 |
718 | 2025-07-04 |
Deep Learning for Fluorescence Lifetime Predictions Enables High-Throughput In Vivo Imaging
2025-Jul-02, Journal of the American Chemical Society
IF:14.4Q1
DOI:10.1021/jacs.5c03749
PMID:40515693
|
研究论文 | 本文介绍了一种名为FLIMngo的深度学习模型,用于从光子稀缺环境中量化荧光寿命成像显微镜(FLIM)数据 | FLIMngo模型能够利用原始FLIM数据中的时间和空间信息,从每个像素少于50个光子的衰减曲线中准确预测荧光寿命,显著减少了数据采集时间 | 模型在模拟数据上进行了表征和基准测试,但在实际应用中的表现可能需要进一步验证 | 提高荧光寿命成像显微镜(FLIM)的数据采集效率,使其成为适用于活体样本分析的高通量工具 | 荧光寿命成像显微镜(FLIM)数据 | 数字病理学 | NA | 荧光寿命成像显微镜(FLIM) | 深度学习模型(FLIMngo) | 图像数据 | NA |
719 | 2025-07-04 |
Dual-Mode Temperature-Pressure MXene Sensor for Enhanced Firefighter Safety and Deep Learning-Enhanced Smart Gloves
2025-Jul-02, ACS applied materials & interfaces
IF:8.3Q1
DOI:10.1021/acsami.5c09442
PMID:40552641
|
研究论文 | 本研究开发了一种基于MXene的双模温度-压力传感器,用于增强消防员安全及深度学习增强的智能手套 | 利用MXene的优异热电性能、金属般导电性和阻燃性,结合柔性防火聚酰亚胺基底,开发出能同时准确检测温度和压力的多功能传感器 | 未明确提及样本量或具体应用场景中的长期稳定性测试 | 开发多功能可穿戴传感器,用于实时监测消防员健康状况及环境参数 | 消防员及其工作环境 | 机器学习 | NA | 深度学习算法 | NA | 传感器数据(温度、压力) | NA |
720 | 2025-07-04 |
Hybrid Transformer for Early Alzheimer's Detection: Integration of Handwriting-Based 2D Images and 1D Signal Features
2025-Jul-02, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2025.3585379
PMID:40601463
|
研究论文 | 提出了一种新型混合Transformer模型,用于通过手写数据早期检测阿尔茨海默病 | 首次将手写2D图像与1D动态信号特征结合,并应用Transformer模型进行阿尔茨海默病检测 | 仅在一个数据集(DARWIN)上进行了验证,未在其他数据集上测试泛化能力 | 开发更准确的阿尔茨海默病早期检测方法 | 阿尔茨海默病患者的手写数据 | 数字病理学 | 阿尔茨海默病 | 深度学习 | 混合Transformer | 图像和信号数据 | DARWIN数据集中的Task 8('L' writing)样本 |