深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 25694 篇文献,本页显示第 7201 - 7220 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
7201 2025-03-27
Prediction of adverse drug reactions based on pharmacogenomics combination features: a preliminary study
2025, Frontiers in pharmacology IF:4.4Q1
研究论文 该研究基于药物基因组学组合特征预测药物不良反应(ADRs),提出了一种新的深度学习架构DGANet 提出了一种新的深度学习架构DGANet,结合CNN和交叉特征学习潜在的药物-基因-ADR关联,用于ADRs预测 研究为初步研究,可能存在数据量和模型泛化能力的限制 预测药物不良反应(ADRs)的发生 药物和基因表达变化 机器学习 NA 药物基因组学数据 CNN 基因组学数据 NA
7202 2025-03-27
Code generation system based on MDA and convolutional neural networks
2025, Frontiers in artificial intelligence IF:3.0Q2
研究论文 该论文介绍了一个基于MDA和卷积神经网络的代码生成系统,旨在通过计算机视觉和深度学习技术从系统描述图中生成源代码 结合计算机视觉、深度学习和MDA技术,实现从系统描述图自动生成源代码 神经网络训练过程中存在硬件限制 开发一个简化软件开发流程的平台,连接规划、结构化和开发阶段 系统描述图和相应案例研究 计算机视觉 NA 计算机视觉、深度学习 CNN 图像 NA
7203 2025-03-27
Research on multi-label recognition of tongue features in stroke patients based on deep learning
2024-12-30, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于深度学习的自动识别中风患者舌象特征的方法,以提高舌象特征自动提取和识别的准确性 设计了一个标签引导的多标签舌象识别模型,能够学习特征之间的相关性并进行分类,自动识别舌形、舌色和舌苔等关键特征 模型性能依赖于舌象图像的质量和数据增强的效果,且未提及模型在不同年龄段或不同中风类型患者中的泛化能力 提高中风患者康复阶段舌象特征的自动提取和识别准确性,为中风康复过程的实时评估和诊断提供技术支持 中风患者的舌象图像 计算机视觉 中风 图像处理和机器学习技术 深度学习模型(与resnet和densenet进行比较) 图像 未提及具体样本数量
7204 2025-03-27
Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy
2024-Dec-10, Nature biotechnology IF:33.1Q1
research paper 该研究利用深度学习策略设计可电离脂质,优化脂质纳米颗粒用于肺部基因治疗 引入基于神经网络的脂质优化方法,用于预测核酸递送效果,并成功设计出两种新型脂质结构FO-32和FO-35 研究主要基于小鼠和雪貂模型,人类应用效果尚需进一步验证 改进脂质纳米颗粒的非病毒mRNA递送技术 可电离脂质和脂质纳米颗粒 machine learning NA deep learning, mRNA delivery directed message-passing neural network lipid nanoparticle activity measurements >9,000种脂质纳米颗粒活性测量数据,评估了160万种脂质结构
7205 2025-03-27
Volumetric Breast Density Estimation From Three-Dimensional Reconstructed Digital Breast Tomosynthesis Images Using Deep Learning
2024-Dec, JCO clinical cancer informatics IF:3.3Q2
研究论文 该研究开发了一种基于深度学习的模型,用于从三维重建的数字乳腺断层合成图像中估计乳腺体积密度,并评估其与乳腺癌诊断的关联 首次使用深度学习模型直接从三维重建的DBT图像中估计乳腺体积密度,无需依赖原始二维数据 研究为回顾性分析,且样本量相对有限 开发一种无需原始DBT数据的乳腺密度自动估计方法,并验证其临床价值 乳腺组织密度与乳腺癌风险 数字病理 乳腺癌 深度学习 DL模型 三维医学图像 1080例非活动性DBT筛查检查(2011-2016年),外加834例病例对照样本(180例病例和654例对照)
7206 2025-03-27
Effect of childhood atropine treatment on adult choroidal thickness using sequential deep learning-enabled segmentation
2024 Sep-Oct, Asia-Pacific journal of ophthalmology (Philadelphia, Pa.)
研究论文 使用序列深度学习分割技术评估儿童期阿托品治疗对成人脉络膜厚度的影响 首次使用序列深度学习方法测量成人脉络膜厚度,并探讨儿童期阿托品治疗的长期影响 研究样本量有限,且未考虑其他可能影响脉络膜厚度的因素 评估儿童期阿托品治疗对成人脉络膜厚度的长期影响 接受过儿童期阿托品治疗的成人 数字病理学 近视 扫频光学相干断层扫描(SS-OCT) 序列深度学习 图像 422只眼睛(94只未接受阿托品治疗,328只接受过治疗)
7207 2025-03-27
Deep learning-based segmentation of subcellular organelles in high-resolution phase-contrast images
2024-Aug-30, Cell structure and function IF:2.0Q4
研究论文 本文提出了一种基于深度学习的亚细胞器在高分辨率相位对比图像中的分割方法 利用荧光标记作为真实掩码的起源,开发了机器学习分割模型,实现了无标记活细胞中亚细胞器的精确分割 NA 开发一种精确分割亚细胞器的方法,以研究无标记活细胞中的细胞动力学 亚细胞器 计算机视觉 NA 深度学习 NA 图像 NA
7208 2025-03-27
Predicting Progression From Mild Cognitive Impairment to Alzheimer's Dementia With Adversarial Attacks
2024-06, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种利用对抗攻击预测轻度认知障碍(MCI)向阿尔茨海默病(AD)转化的简单框架 通过对抗攻击找到输入空间中的对抗进展方向,利用决策边界的距离预测患者下一次就诊的诊断结果 阿尔茨海默病研究中的可用数据集规模不足以从患者数据中学习复杂模型 预测MCI向AD的转化并辅助患者分型 轻度认知障碍(MCI)患者 机器学习 阿尔茨海默病 对抗攻击 浅层神经网络 患者数据 两个公开可用的阿尔茨海默病研究数据集
7209 2025-03-27
Automated intracranial vessel segmentation of 4D flow MRI data in patients with atherosclerotic stenosis using a convolutional neural network
2024, Frontiers in radiology
研究论文 本文开发了一种基于深度学习的全自动分割方法,用于颅内狭窄血管的4D流动MRI数据分割,以提高数据分析的重复性和鲁棒性 首次应用3D U-Net进行颅内狭窄血管的全自动分割,显著提高了分割的准确性和效率 未来需要更多颅内动脉粥样硬化疾病(ICAD)的分割数据以及其他颅内血管病变的数据来提高模型的性能和泛化能力 开发一种准确、全自动的分割方法,用于颅内狭窄血管的4D流动MRI数据分割,以改善血流动力学的定量评估 颅内动脉粥样硬化疾病(ICAD)患者和健康对照者的4D流动MRI数据 数字病理 颅内动脉粥样硬化疾病 4D流动MRI 3D U-Net MRI图像 154例双VENC 4D流动MRI扫描(68例ICAD患者,86例健康对照)
7210 2025-03-27
Deep Learning-Enabled Multiplexed Point-of-Care Sensor using a Paper-Based Fluorescence Vertical Flow Assay
2023-12, Small (Weinheim an der Bergstrasse, Germany)
研究论文 本文展示了一种基于深度学习的多重即时检测传感器,用于同时量化急性心脏损伤的三种生物标志物 结合纸基荧光垂直流动检测(fxVFA)与低成本移动阅读器,通过训练神经网络在15分钟内完成检测,具有高灵敏度和低交叉反应性 仅验证了46个独立激活的检测卡,样本量相对较小 开发一种低成本、便携式的即时检测平台,用于急性心脏损伤的诊断 人类血清样本中的三种心脏生物标志物(肌红蛋白、肌酸激酶-MB和心型脂肪酸结合蛋白) 数字病理 心血管疾病 纸基荧光垂直流动检测(fxVFA) 神经网络 荧光信号 46个独立激活的检测卡,每个患者使用50µL血清样本
7211 2025-03-27
Embryonic cranial cartilage defects in the Fgfr3Y367C /+ mouse model of achondroplasia
2023-Sep-25, Anatomical record (Hoboken, N.J. : 2007)
研究论文 本研究利用Fgfr3Y367C/+小鼠模型探讨了软骨发育不全症胚胎期颅骨和Meckel软骨的缺陷 首次在胚胎期研究了Fgfr3突变对颅骨和咽部软骨的直接影响,并开发了基于深度学习的3D分割模型 研究仅使用了小鼠模型,结果在人类中的适用性需要进一步验证 探究软骨发育不全症中FGFR3突变对胚胎期软骨发育的影响 Fgfr3Y367C/+突变小鼠的胚胎颅骨和Meckel软骨 数字病理学 软骨发育不全症 microCT成像和深度学习3D分割 深度学习3D分割模型 3D图像 E14.5和E16.5胚胎期Fgfr3突变小鼠及其未受影响同窝仔
7212 2025-03-27
Sub-second photon dose prediction via transformer neural networks
2023-May, Medical physics IF:3.2Q1
研究论文 提出了一种结合Transformer和卷积层的深度学习算法iDoTA,用于快速预测光子束剂量分布 利用Transformer和卷积层的协同作用,实现了毫秒级的光子束剂量分布预测,为在线和实时自适应治疗提供了新方法 研究仅基于1700个光束剂量分布的数据集,可能在不同临床场景中的泛化能力有待验证 开发一种快速且准确的光子束剂量分布预测算法,以支持在线和实时自适应治疗 光子束剂量分布预测 机器学习 前列腺癌、肺癌、头颈癌 深度学习 Transformer与CNN结合 3D CT图像 1700个光束剂量分布,来自11个临床VMAT计划(每个计划194-354个光束)
7213 2025-03-27
MULTITASK LEARNING FOR IMPROVED LATE MECHANICAL ACTIVATION DETECTION OF HEART FROM CINE DENSE MRI
2023-Apr, Proceedings. IEEE International Symposium on Biomedical Imaging
研究论文 本文提出了一种多任务深度学习框架,用于同时估计心脏晚期机械激活(LMA)量并分类无疤痕的LMA区域,以提高心脏再同步治疗(CRT)的准确性 引入了辅助LMA区域分类子网络,提高了模型对心肌疤痕引起的复杂模式的鲁棒性,显著消除了LMA检测中的负面影响,并进一步改善了疤痕分类性能 NA 提高心脏晚期机械激活(LMA)区域的检测准确性,特别是在存在心肌疤痕的情况下 心脏的晚期机械激活(LMA)区域 医学影像分析 心血管疾病 cine位移编码与受激回波(DENSE)磁共振成像(MRI) 多任务深度学习框架 心脏MR图像 NA
7214 2025-03-27
Multi-step short-term P M 2.5  forecasting for enactment of proactive environmental regulation strategies
2022-04-21, Environmental monitoring and assessment IF:2.9Q3
研究论文 该研究探讨了使用LSTM模型预测PM2.5浓度的多步短期预测方法,以支持主动环境监管策略的制定 采用贝叶斯优化技术调整LSTM模型的超参数和权重初始化策略,提高了PM2.5浓度预测的准确性 预测误差随时间步长增加而逐渐增大,24小时预测的RMSE达到0.7290 量化并预测颗粒物浓度,以支持环境监管和早期预警系统的建立 北京(中国)和旁遮普(巴基斯坦)两个高污染地区的PM2.5浓度数据 机器学习 心血管疾病 LSTM模型,贝叶斯优化 LSTM 时间序列数据 来自北京和旁遮普两个地区的数据
7215 2025-03-26
Artificial Intelligence Models to Identify Patients with High Probability of Glaucoma Using Electronic Health Records
2025 May-Jun, Ophthalmology science IF:3.2Q1
研究论文 本研究开发了人工智能模型,利用电子健康记录(EHRs)中的数据识别高概率青光眼患者,无需眼科影像或临床数据 利用非眼科的结构化EHR数据(如人口统计、实验室结果、测量、药物和诊断)开发AI模型,无需专用眼科影像或临床数据即可识别青光眼高风险患者 需要进一步研究受保护类别特征(如种族/民族)对模型性能和公平性的影响 开发AI模型以早期识别青光眼高风险患者 64,735名18岁以上、在EHR中有至少两次眼相关诊断记录的患者 机器学习 青光眼 机器学习与深度学习 惩罚逻辑回归、XGBoost、1D-CNN和堆叠自编码器 结构化电子健康记录数据 64,735名患者,其中7,268名(11.22%)有青光眼诊断
7216 2025-03-26
Weakly supervised multi-modal contrastive learning framework for predicting the HER2 scores in breast cancer
2025-Apr, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society IF:5.4Q1
研究论文 提出了一种弱监督多模态对比学习框架(WSMCL),用于预测乳腺癌中的HER2评分 首次将多模态(H&E和IHC)联合学习与弱监督对比学习相结合,通过多模态注意力对比学习模块(MACL)实现不同模态特征的语义对齐 未提及具体样本量或数据集的多样性限制 提高乳腺癌HER2评分的预测准确性 乳腺癌全切片图像(WSI)中的HER2评分 数字病理学 乳腺癌 多模态对比学习、多头自注意力(MHSA) WSMCL(弱监督多模态对比学习框架) 全切片图像(WSI) NA
7217 2025-03-26
Artificial intelligence-driven forecasting and shift optimization for pediatric emergency department crowding
2025-Apr, JAMIA open IF:2.5Q3
研究论文 本研究开发并评估了一个基于人工智能(AI)的系统,用于预测儿科急诊科(PED)的拥挤情况,并通过机器学习操作(MLOps)优化医生班次安排 结合先进的深度学习模型与MLOps架构,实现持续模型更新,提升预测准确性,并在COVID-19等事件导致的数据漂移中表现出韧性 单中心设计和固定的人员配置模型,需多中心验证和在动态人员配置环境中的实施 预测儿科急诊科拥挤情况并优化医生班次安排 352,843例儿科急诊科入院数据 机器学习 儿科急诊 机器学习操作(MLOps) Temporal Convolutional Network, Time-series Dense Encoder, Reversible Instance Normalization, Neural High-order Time Series model, Neural Basis Expansion Analysis 时间序列数据 352,843例儿科急诊科入院数据
7218 2025-03-26
Deep-Learning-Assisted Understanding of the Self-Assembly of Miktoarm Star Block Copolymers
2025-Mar-25, ACS nano IF:15.8Q1
research paper 该研究应用深度学习技术解析了AB型星形嵌段共聚物PEO-PS在蒸发诱导自组装系统中的相行为 首次将深度学习技术应用于复杂拓扑结构嵌段共聚物的自组装行为研究,成功预测了三维合成场图并揭示了参数与结构之间的关联 研究仅针对特定类型的星形嵌段共聚物(PEO-PS),结论可能不适用于其他拓扑结构的共聚物 探索复杂拓扑结构嵌段共聚物的自组装行为规律 AB型星形嵌段共聚物PEO-PS soft matter science NA deep learning neural network experimental data 包含两种聚合物特性和三种合成条件参数的数据集
7219 2025-03-26
From 1-D to 3-D: LIBS Pseudohyperspectral Data Cube Deep Learning Mechanism Used in Nuclear Metal Materials Classification
2025-Mar-25, Analytical chemistry IF:6.7Q1
研究论文 提出一种名为LIBS伪高光谱数据立方体的新光谱数据机制,将1-D LIBS光谱转化为3-D数据立方体,以提高核金属材料分类的准确性 引入两个额外维度捕捉光谱变化信息,使LIBS系统在处理不稳定光谱时更加稳健,并充分利用深度学习算法 未明确提及具体局限性 提高核电站中不稳定光谱的分类准确性 核金属材料 机器学习 NA LIBS(激光诱导击穿光谱) 深度学习算法(含注意力机制) 光谱数据 NA
7220 2025-03-26
Leveraging Deep Learning for Urban Health Insights: Transforming Street-Level Imagery into Cardiovascular Risk Indicators
2025-Mar-25, European journal of preventive cardiology IF:8.4Q1
NA NA NA NA NA NA NA NA NA NA NA NA
回到顶部