深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24022 篇文献,本页显示第 7221 - 7240 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
7221 2025-02-08
Transitioning from wet lab to artificial intelligence: a systematic review of AI predictors in CRISPR
2025-Feb-04, Journal of translational medicine IF:6.1Q1
综述 本文系统回顾了CRISPR-Cas9系统中人工智能预测器的应用,旨在通过AI算法优化CRISPR-Cas9的多步骤过程 本文为AI研究人员提供了一个独特的平台,以深入理解CRISPR-Cas9多步骤过程中的生物学基础,并详细介绍了80个可用的CRISPR-Cas9系统相关数据集 现有的AI预测器性能有限,许多步骤仍依赖于昂贵且耗时的湿实验室实验 通过AI算法优化CRISPR-Cas9系统的多步骤过程 CRISPR-Cas9系统及其多步骤过程 机器学习 癌症、遗传病、遗传性疾病 CRISPR-Cas9 机器学习、深度学习 数据集 80个CRISPR-Cas9系统相关数据集
7222 2025-02-08
Synthetic CT generation from CBCT and MRI using StarGAN in the Pelvic Region
2025-Feb-04, Radiation oncology (London, England)
研究论文 本研究评估了StarGAN在从磁共振成像(MRI)和锥形束计算机断层扫描(CBCT)数据生成合成计算机断层扫描(sCT)图像方面的性能,并与常用的CycleGAN进行了比较 使用StarGAN单一模型从MRI和CBCT数据生成sCT图像,以提供准确的Hounsfield单位(HU)数据,用于剂量计算,从而实现MRI模拟和自适应放射治疗(ART) StarGAN在定量指标上不如CycleGAN,尽管在解剖结构保留方面表现更好 评估StarGAN在生成sCT图像方面的性能,以支持MRI模拟和自适应放射治疗 53例盆腔癌症病例 计算机视觉 盆腔癌症 深度学习 StarGAN, CycleGAN 图像 53例盆腔癌症病例
7223 2025-02-08
Enabling high-throughput quantitative wood anatomy through a dedicated pipeline
2025-Feb-04, Plant methods IF:4.7Q1
研究论文 本文介绍了一种半自动化的高通量管道,用于样本制备、千兆像素成像和分析木材端面解剖结构 提出了一种结合协作机器人、定制开源千兆像素成像系统和深度学习分析的全新半自动化管道,显著提高了木材解剖结构的分析效率和精度 目前仅展示了在榉木样本上的应用,尚未验证其在其他树种或更广泛样本上的适用性 开发一种高效、精确的木材解剖结构分析方法,以解锁树木在其生命周期中存储的环境信息 木材端面解剖结构,特别是导管和射线的量化分析 数字病理学 NA 深度学习,千兆像素成像 YOLOv8 图像 30-35厘米直径的榉木圆盘和5根30厘米长的榉木增量芯
7224 2025-02-08
3D convolutional deep learning for nonlinear estimation of body composition from whole body morphology
2025-Feb-02, NPJ digital medicine IF:12.4Q1
研究论文 本文提出了一种使用3D卷积深度学习网络和非线性高斯过程回归从全身形态学估计身体成分的新方法 首次将深度3D卷积图网络和非线性高斯过程回归应用于人体形状参数化和身体成分估计 仅对男性使用深度形状特征时预测误差减少,且数据集样本量有限 研究从3D光学图像中预测身体成分的非线性方法 人体身体成分 计算机视觉 NA 3D卷积深度学习,高斯过程回归 3D卷积图网络,高斯过程回归 3D光学图像 4286次扫描
7225 2025-02-08
Deep learning to decode sites of RNA translation in normal and cancerous tissues
2025-Feb-02, Nature communications IF:14.7Q1
研究论文 本文介绍了一种基于Transformer模型的RiboTIE方法,用于增强核糖体分析数据的分析,以解码正常和癌变组织中的RNA翻译位点 RiboTIE直接利用原始核糖体分析数据,以高精度和高灵敏度检测翻译的开放阅读框(ORFs),并在多种数据集上进行了评估 未明确提及具体局限性 提高核糖体分析数据的分析精度和深度,以更好地理解蛋白质合成及其在疾病中的意义 正常脑组织和髓母细胞瘤癌症样本中的RNA翻译位点 自然语言处理 癌症 Ribo-Seq Transformer 核糖体分析数据 多种数据集,包括正常脑组织和髓母细胞瘤癌症样本
7226 2025-02-08
Automated 24-sector grid-map algorithm for prostate mpMRI improves precision and efficacy of prostate lesion location reporting
2025-Feb, European journal of radiology IF:3.2Q1
研究论文 本研究开发了一种基于深度学习的自动前列腺24分区网格图算法,用于提高前列腺病变位置报告的精确性和效率 首次开发了一种自动化的24分区网格图算法,用于前列腺多参数磁共振成像(mpMRI)的病变定位,显著提高了定位报告的准确性 研究样本量较小,仅使用了50个mpMRI数据集进行验证 训练并验证一种基于深度学习的前列腺自动分区映射算法,以提高前列腺病变位置报告的精确性和效率 前列腺病变 数字病理学 前列腺癌 深度学习 深度学习模型 图像 50个mpMRI数据集
7227 2025-02-08
GBM-Reservoir: Brain tumor (Glioblastoma Multiforme) MRI dataset collection with ground truth segmentation masks
2025-Feb, Data in brief IF:1.0Q3
研究论文 本文介绍了一个包含23,049个样本的脑肿瘤(胶质母细胞瘤)MRI数据集,每个样本包括四种不同类型的MRI脑扫描:FLAIR、T1、T1ce和T2,并提供了一到两个分割掩码(真实标签) 通过注册过程扩展了原始数据集,生成了保留相似脑形状但肿瘤位置不同的额外扫描,从而显著增加了数据集的规模 图像质量因不同机构和成像协议的差异而存在异质性 开发全自动分割算法,特别是基于深度学习的方法,用于新的未见过的脑肿瘤病例 脑肿瘤(胶质母细胞瘤)的MRI扫描数据 数字病理学 脑肿瘤 MRI扫描 NA 图像 23,049个样本,基于BraTS 2022挑战赛提供的438个原始样本通过注册过程扩展
7228 2025-02-08
Refining the prediction of user satisfaction on chat-based AI applications with unsupervised filtering of rating text inconsistencies
2025-Feb, Royal Society open science IF:2.9Q1
研究论文 本文提出了一种框架,通过自然语言处理和机器学习技术对Google Play商店中的聊天AI应用评论数据进行情感分析,以提高用户满意度预测的准确性 提出了一种通过多数投票的无监督情感分析过滤评论数据不一致性的方法,并采用多种机器学习和深度学习算法进行监督情感分析 NA 提高聊天AI应用用户满意度预测的准确性,以改进服务质量 Google Play商店中的聊天AI应用评论数据 自然语言处理 NA 自然语言处理,机器学习,深度学习 多种机器学习和深度学习算法 文本 NA
7229 2025-02-08
Applying deep learning for underwater broadband-source detection using a spherical array
2025-Feb-01, The Journal of the Acoustical Society of America IF:2.1Q1
研究论文 本文开发了一种基于深度神经网络(DNN)的球形阵列水下宽带源检测和到达方向估计方法 该方法通过球形傅里叶变换将元素压力信号转换为球形傅里叶系数作为DNN输入,并采用高斯分布设计DNN标签,显著提高了检测能力并有效抑制了误估计 该方法在训练数据中引入白噪声,可能对实际应用中的噪声环境适应性有限 提高水下宽带源的被动检测能力 水下宽带源 机器学习 NA 深度神经网络(DNN) DNN 声压信号 模拟和实验处理结果
7230 2025-02-08
Inference of the Mass Composition of Cosmic Rays with Energies from 10^{18.5} to 10^{20}  eV Using the Pierre Auger Observatory and Deep Learning
2025-Jan-17, Physical review letters IF:8.1Q1
研究论文 本文利用Pierre Auger Observatory的表面探测器和深度学习技术,首次在事件级别上推断出宇宙射线的大气深度最大值X_{max},并扩展了X_{max}分布的测量范围至100 EeV,揭示了极端能量下宇宙射线的质量组成 首次在事件级别上推断X_{max},并利用深度学习技术扩展了测量范围至100 EeV,提供了极端能量下宇宙射线质量组成的新见解 NA 研究极端能量下宇宙射线的质量组成 宇宙射线 机器学习 NA 深度学习 NA 探测器数据 NA
7231 2025-02-08
Computational Resources for lncRNA Functions and Targetome
2025, Methods in molecular biology (Clifton, N.J.)
综述 本章节全面回顾了长链非编码RNA(lncRNA)领域的数据库和预测工具,包括lncRNA数据库、基于机器学习的算法以及利用不同技术预测lncRNA的工具 提供了lncRNA资源的全面概述,特别是针对人类、小鼠、植物和其他模式生物开发的资源,并讨论了使用深度学习、支持向量机(SVM)和随机森林(RF)等算法进行lncRNA的计算识别 本章节主要集中于已有资源的综述,未涉及新的实验数据或方法开发 总结和评估现有的lncRNA计算资源,以帮助生物学家选择最适合其研究需求的工具 长链非编码RNA(lncRNA)及其在不同生物体中的功能和靶标组 生物信息学 NA 深度学习、支持向量机(SVM)、随机森林(RF) NA 文本、数据库信息 NA
7232 2025-02-08
Structure-Based Prediction of lncRNA-Protein Interactions by Deep Learning
2025, Methods in molecular biology (Clifton, N.J.)
研究论文 本章介绍了基于三维结构信息预测长非编码RNA(lncRNA)与蛋白质相互作用的基本框架 利用深度学习方法自动表示和学习lncRNA与蛋白质的三维结构信息,提出几何深度学习方法在lncRNA-蛋白质相互作用预测中的应用 未提及具体的数据集或实验验证结果,可能缺乏实际应用验证 预测lncRNA与蛋白质的相互作用并解析其机制 长非编码RNA(lncRNA)和蛋白质 机器学习 NA 深度学习方法 神经网络 三维结构数据 NA
7233 2025-02-08
Surface defect detection on industrial drum rollers: Using enhanced YOLOv8n and structured light for accurate inspection
2025, PloS one IF:2.9Q1
研究论文 本文设计了一种基于线条纹结构光的图像采集系统,并提出了一种基于YOLOv8n的改进深度学习网络模型,以实现对滚筒表面缺陷的高效检测 使用线条纹结构光作为系统光源,改进了YOLOv8n算法,包括使用可变形卷积增强特征提取能力、提出新的特征融合模块以及应用Wise-IoU替换CIoU损失函数 模型的标准矩形边界框可能限制了对细长缺陷的精确检测,未来工作可以探索旋转边界框和更广泛的数据集多样性以增强在实际应用中的泛化能力 提高滚筒表面缺陷检测的效率和准确性 工业滚筒的表面缺陷 计算机视觉 NA 线条纹结构光 YOLOv8n 图像 NA
7234 2025-02-08
Application of human-in-the-loop hybrid augmented intelligence approach in security inspection system
2025, Frontiers in artificial intelligence IF:3.0Q2
研究论文 本文提出了一种人机协作的混合增强智能方法,用于提升安全检查系统的安全性和可靠性 提出了一种结合人类和机器智能的混合决策方法,采用“拒绝优先”和“放行优先”两种策略,以提升决策过程的整体性能 未提及具体的技术实现细节和潜在的局限性 提升安全检查系统的安全性和可靠性 安全检查系统 机器学习和人机协作 NA 深度学习 NA 安全检查数据 来自特定安全检查站点的数据集
7235 2025-02-08
AlphaFold 2, but not AlphaFold 3, predicts confident but unrealistic β-solenoid structures for repeat proteins
2025, Computational and structural biotechnology journal IF:4.4Q2
研究论文 本文评估了AlphaFold 2在预测由完美重复序列组成的蛋白质结构时的表现,发现其经常预测出高置信度但不现实的β-螺旋结构 揭示了AlphaFold 2在预测完美重复序列时倾向于生成高置信度但不现实的β-螺旋结构,而其他深度学习方法则预测出不同的结构或低置信度的β-螺旋结构 研究主要关注完美重复序列,未全面评估AlphaFold 2在其他类型蛋白质上的表现 评估AlphaFold 2在预测完美重复序列蛋白质结构时的表现 由完美重复序列组成的蛋白质 蛋白质结构预测 NA 分子动力学 AlphaFold 2 蛋白质序列 不同长度的随机序列组成的完美重复序列
7236 2025-02-08
Physics-guided multistage neural network: A physically guided network for step initial values and dispersive shock wave phenomena
2024-Dec, Physical review. E
研究论文 本文提出了一种物理引导的多阶段神经网络(PgMSNN)模型,用于模拟复杂的色散冲击波现象 通过集成残差学习范式并在现有PINN方法中引入色散因子,显著增强了物理信息神经网络(PINNs)描述复杂色散现象的能力,并提出了一种高度自适应的深度Runge-Kutta方法 NA 提高物理信息神经网络(PINNs)在色散冲击波现象中的数值模拟精度和稳定性 色散冲击波现象 机器学习 NA 物理引导的多阶段神经网络(PgMSNN) 物理引导的多阶段神经网络(PgMSNN) 数值数据 NA
7237 2025-02-08
DeepPFP: a multi-task-aware architecture for protein function prediction
2024-Nov-22, Briefings in bioinformatics IF:6.8Q1
研究论文 本文提出了一种名为DeepPFP的多任务感知架构,用于蛋白质功能预测,旨在解决序列与功能之间复杂关系的挑战 结合模型无关的元学习(Model-Agnostic Meta-Learning)和蛋白质语言模型(Evolutionary Scale Modeling),提出了一种能够捕捉多样化序列-功能映射任务共享特征的架构 模型在跨领域迁移学习时可能仍面临挑战,因为蛋白质功能高度依赖于结构特征而非单纯的序列信息 解决蛋白质功能预测中的泛化问题,提升跨任务和跨领域的预测性能 蛋白质序列及其功能 机器学习 NA 深度突变扫描(DMS) Model-Agnostic Meta-Learning, 蛋白质语言模型 蛋白质序列数据 5个外域DMS数据集,以及SARS-CoV-2的DMS数据集中的500个样本
7238 2025-02-08
Role of artificial intelligence in brain tumour imaging
2024-Jul, European journal of radiology IF:3.2Q1
综述 本文综述了人工智能在脑肿瘤影像学中的应用,重点讨论了机器学习和深度学习技术 探讨了AI在脑肿瘤影像学中的多种应用,包括病变检测、鉴别诊断、解剖分割、分子标志物识别、预后评估和假性进展评估,并涵盖了非胶质瘤脑肿瘤的AI应用 讨论了AI在放射学中实施的挑战和局限性,如数据质量、标准化和整合问题 探讨人工智能在脑肿瘤影像学中的应用,以改善脑肿瘤的诊断和治疗 脑肿瘤影像学 医学影像 脑肿瘤 机器学习(ML)和深度学习(DL) NA 影像数据 NA
7239 2025-02-08
Single-cell multi-omics analysis reveals cooperative transcription factors for gene regulation in oligodendrocytes
2024-Jun-21, bioRxiv : the preprint server for biology
研究论文 本文通过单细胞多组学分析揭示了少突胶质细胞中转录因子的协同作用对基因调控的影响 整合了scRNA-seq和scATAC-seq数据,使用深度学习模型预测目标基因表达,并计算了TF重要性和TF-TF相互作用分数 研究主要基于计算模型预测,部分结果需要实验验证 探究少突胶质细胞中转录因子如何协同调控基因表达 少突胶质细胞 生物信息学 脑部疾病 scRNA-seq, scATAC-seq, 深度学习模型, ChIP-seq 深度学习模型 单细胞RNA测序数据, 单细胞ATAC测序数据 NA
7240 2025-02-08
Demographic bias in misdiagnosis by computational pathology models
2024-Apr, Nature medicine IF:58.7Q1
研究论文 本文探讨了基于深度学习的计算病理学系统在诊断过程中忽视人口统计学因素影响的问题,并展示了这些系统在不同人口群体中的性能差异 揭示了计算病理学模型在不同人口群体中的性能差异,并展示了自监督视觉基础模型在减少这些差异方面的潜力 自监督视觉基础模型未能完全消除性能差异,表明在计算病理学中仍需进一步努力进行偏差缓解 研究计算病理学模型在不同人口群体中的性能差异及其影响因素 乳腺癌和肺癌的亚型分类以及胶质瘤中IDH1突变的预测 数字病理学 肺癌, 乳腺癌, 胶质瘤 自监督视觉基础模型 深度学习模型 全切片图像 来自The Cancer Genome Atlas和EBRAINS脑肿瘤图谱的公开数据以及内部患者数据
回到顶部