深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 26128 篇文献,本页显示第 7381 - 7400 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
7381 2025-04-03
Foundation Model for Predicting Prognosis and Adjuvant Therapy Benefit From Digital Pathology in GI Cancers
2025-Apr-01, Journal of clinical oncology : official journal of the American Society of Clinical Oncology IF:42.1Q1
研究论文 本文提出了一种基于数字病理学的基础AI模型,用于预测胃肠道癌症患者的预后和辅助化疗的益处 开发了一个基于自监督学习的基础模型,能够从标准H&E染色的组织病理学切片中预测预后,并在多个国际队列中验证了其效果 需要前瞻性验证以确认模型的临床应用价值 提高胃肠道癌症的诊断和治疗效果 胃肠道癌症患者 数字病理学 胃肠道癌症 自监督学习 深度学习模型 图像 104,876张全切片图像(来自1,619名胃癌和食管癌患者及2,594名结直肠癌患者)
7382 2025-04-03
New Machine Learning Method for Medical Image and Microarray Data Analysis for Heart Disease Classification
2025-Apr-01, Journal of imaging informatics in medicine
研究论文 提出一种结合深度神经网络和基因选择的新方法,用于心脏病分类和生物标志物发现 提出DeepGeneNet(DGN)框架,将基因选择和DNN分类统一,结合超参数优化和U-Net分割技术 未提及具体样本量或外部验证结果 提高心脏病分类的准确性和可解释性 微阵列基因表达数据 机器学习 心血管疾病 微阵列技术 DNN, U-Net 基因表达数据 NA
7383 2025-04-03
Quantitative molecular imaging using deep magnetic resonance fingerprinting
2025-Apr-01, Nature protocols IF:13.1Q1
研究论文 介绍了一种基于深度学习的饱和转移磁共振指纹图谱(MRF)技术,用于蛋白质、代谢物和pH的无创体内成像 深度MRF技术提供了一个快速、定量的框架,用于提取具有生物学和临床意义的分子信息,解决了传统技术的技术复杂性、半定量对比加权性质以及长扫描时间的问题 流程完成时间从48分钟到57小时不等,对于复杂的多质子池体内成像耗时较长 开发一种定量分子MRI的完整协议,用于癌症监测、脑髓鞘成像和pH量化等应用 体外样本、动物和人类扫描 数字病理 癌症、神经退行性疾病、中风和心脏病 饱和转移磁共振指纹图谱(MRF)、化学交换饱和转移(CEST)和半固态磁化转移(MT)定量成像 深度学习模型 MRI图像 未明确提及具体样本数量,但涉及体外样本、动物和人类扫描
7384 2025-04-03
DiffMC-Gen: A Dual Denoising Diffusion Model for Multi-Conditional Molecular Generation
2025-Apr-01, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
研究论文 本文提出了一种双去噪扩散模型DiffMC-Gen,用于多条件分子生成,以优化候选化合物的多种性质 DiffMC-Gen模型整合了离散和连续特征以增强对3D分子结构的感知能力,并采用多目标优化策略同时优化多个分子性质 未明确提及具体局限性 开发一种能够同时优化多种药物分子性质的深度学习方法 药物分子设计 机器学习 NA 去噪扩散模型 DiffMC-Gen 分子结构数据 针对三种目标蛋白(LRRK2、HPK1和GLP-1受体)生成的分子
7385 2025-04-03
Trade-off of different deep learning-based auto-segmentation approaches for treatment planning of pediatric craniospinal irradiation autocontouring of OARs for pediatric CSI
2025-Apr-01, Medical physics IF:3.2Q1
research paper 本研究比较了三种自动分割方法在儿童颅脊髓照射治疗计划中的应用,包括商业软件、开箱即用方法和内部开发方法 比较了不同自动分割方法在儿童患者中的适用性,并提出了针对特定器官的内部开发方法 商业软件对儿童解剖结构的适应性不足,特别是食管和肾脏的分割效果较差 评估不同自动分割方法在儿童颅脊髓照射治疗计划中的性能 儿童颅脊髓照射治疗中的18个风险器官 digital pathology pediatric disease auto-segmentation U-Net, attention U-Net, 2.5D U-Net, nnU-Net CT scans 142名儿童患者的CT扫描(训练集115例,验证集27例),外加16例测试集
7386 2025-04-03
A novel algorithm for automated analysis of coronary CTA-derived FFR in identifying ischemia-specific CAD: A multicenter study
2025-Apr-01, Medical physics IF:3.2Q1
research paper 本研究验证了一种基于深度学习和水平集算法的冠状动脉CTA衍生FFR新型分析模型在识别缺血特异性CAD中的能力 结合深度学习和水平集算法优化冠状动脉3D重建的新型CT FFR算法 研究为回顾性分析,样本量相对有限(198根血管/171例患者) 验证新型CT FFR模型在识别病灶特异性缺血性冠状动脉疾病中的效能 接受CTA和有创FFR检查的冠状动脉血管 digital pathology cardiovascular disease coronary computed tomography angiography (CTA), invasive fractional flow reserve (FFR) deep learning, level set algorithm medical imaging 198 vessels from 171 patients across 4 medical centers
7387 2025-04-03
Deep graph learning of multimodal brain networks defines treatment-predictive signatures in major depression
2025-Mar-31, Molecular psychiatry IF:9.6Q1
研究论文 本研究利用深度图学习方法分析多模态脑网络数据,以预测重度抑郁症患者对抗抑郁药物的治疗反应 开发了一个基于图神经网络的深度学习框架,整合了fMRI和EEG数据,揭示了与治疗反应相关的多模态脑网络特征 样本量相对有限(265名患者),且仅针对特定抗抑郁药物(舍曲林)进行了研究 预测重度抑郁症患者对抗抑郁药物的个体化治疗反应 265名重度抑郁症患者(130名接受舍曲林治疗,135名接受安慰剂) 数字病理学 抑郁症 fMRI, EEG, 图神经网络 GNN 神经影像数据 265名患者(来自EMBARC研究)
7388 2025-04-03
Simultaneous detection of citrus internal quality attributes using near-infrared spectroscopy and hyperspectral imaging with multi-task deep learning and instrumental transfer learning
2025-Mar-22, Food chemistry IF:8.5Q1
研究论文 本研究利用高光谱成像(HSI)和近红外光谱(NIR)技术,结合多任务深度学习和仪器迁移学习,同时检测柑橘内部品质属性 开发了单任务和多任务卷积神经网络(CNN)模型,探索了从HSI到NIR的模型迁移可行性 研究仅针对两种柑橘品种(衢州椪柑和湘西长叶),模型在其他品种上的适用性未验证 同时测定柑橘水果的多种品质属性,并实现不同仪器间模型的成功迁移 衢州椪柑和湘西长叶两种柑橘的可溶性固形物含量(SSC)和pH值 计算机视觉 NA 高光谱成像(HSI)和近红外光谱(NIR) CNN(卷积神经网络) 图像和光谱数据 两种柑橘品种(具体样本数量未提及)
7389 2025-04-03
Machine-learning models for Alzheimer's disease diagnosis using neuroimaging data: survey, reproducibility, and generalizability evaluation
2025-Mar-21, Brain informatics
研究论文 本文综述了利用神经影像数据进行阿尔茨海默病诊断的机器学习模型,并评估了这些模型的可重复性和泛化性 对现有机器学习模型在阿尔茨海默病诊断中的可重复性和泛化性进行了系统性评估 现有模型在不同数据队列中泛化能力下降 评估机器学习模型在阿尔茨海默病早期诊断中的应用潜力 阿尔茨海默病患者和轻度认知障碍患者 机器学习 阿尔茨海默病 sMRI, fMRI, PET 传统机器学习(ML)和深度学习(DL) 神经影像数据 NA
7390 2025-04-03
HIPPIE: A Multimodal Deep Learning Model for Electrophysiological Classification of Neurons
2025-Mar-15, bioRxiv : the preprint server for biology
research paper 介绍了一种名为HIPPIE的多模态深度学习模型,用于神经元的电生理分类 结合了自监督预训练和监督微调,使用条件卷积联合自编码器学习稳健的波形和放电动态表示 未提及具体局限性 解决细胞外电生理记录中神经元分类的计算挑战 小鼠记录和脑切片中的神经元 machine learning NA 自监督学习, 监督学习 conditional convolutional joint autoencoders 电生理记录数据 小鼠记录和脑切片
7391 2025-03-13
Publisher Correction: A hybrid explainable model based on advanced machine learning and deep learning models for classifying brain tumors using MRI images
2025-Mar-11, Scientific reports IF:3.8Q1
NA NA NA NA NA NA NA NA NA NA NA NA
7392 2025-04-03
Comparative analysis of U-Mamba and no new U-Net for the detection and segmentation of esophageal cancer in contrast-enhanced computed tomography images
2025-Mar-03, Quantitative imaging in medicine and surgery IF:2.9Q2
研究论文 本研究旨在开发和验证一种深度学习模型,用于在增强CT图像中自动检测和分割食管癌病变 比较了U-Mamba和nnU-Net两种深度学习网络在食管癌检测和分割中的性能,并展示了其在减少漏诊和提供一致病变标注方面的优势 研究为回顾性设计,可能受到选择偏倚的影响,且仅使用了来自三家医院的数据 开发自动检测和分割食管癌病变的深度学习模型 食管癌患者和健康食管的个体 数字病理 食管癌 对比增强CT成像 U-Mamba和nnU-Net 医学图像 871名患者(564名男性),中位年龄67岁
7393 2025-04-03
Ultrasound-based deep learning radiomics for multi-stage assisted diagnosis in reducing unnecessary biopsies of BI-RADS 4A lesions
2025-Mar-03, Quantitative imaging in medicine and surgery IF:2.9Q2
研究论文 本研究开发了基于超声图像的深度学习放射组学模型,用于改善BI-RADS 4A病变的诊断一致性并减少不必要的活检 提出了两种深度学习放射组学模型(DLR_LH和DLR_BM),用于乳腺病变风险重新分层和识别低恶性概率的BI-RADS 4A病变,以减少不必要的活检 研究为回顾性设计,可能受到选择偏倚的影响 提高乳腺超声成像诊断的准确性,减少不必要的活检 746名乳腺病变患者 数字病理 乳腺癌 深度学习放射组学 DLR(深度学习放射组学模型) 超声图像和临床变量 746名患者
7394 2025-04-03
Multitask Swin Transformer for classification and characterization of pulmonary nodules in CT images
2025-Mar-03, Quantitative imaging in medicine and surgery IF:2.9Q2
research paper 提出了一种多任务Swin Transformer(MTST)模型,用于CT图像中肺结节的分类和特征分析 结合多任务学习框架,同时输出良恶性分类、多级分类和结节特征分析,提高了模型的性能和可解释性 模型性能依赖于数据质量和数量,且在实际临床环境中的泛化能力有待进一步验证 开发一种计算机辅助诊断(CAD)系统,用于肺结节的早期诊断和特征分析 CT图像中的肺结节 digital pathology lung cancer U-Net GAN用于图像增强 Swin Transformer, CNN CT图像 训练集/验证集/测试集分别为9,600/2,400/1,600个结节
7395 2025-04-03
Deep learning for identifying cervical ossification of the posterior longitudinal ligament: a systematic review and meta-analysis
2025-Mar-03, Quantitative imaging in medicine and surgery IF:2.9Q2
系统综述与荟萃分析 本文通过系统综述和荟萃分析评估深度学习模型在诊断和预测颈椎后纵韧带骨化症中的性能 首次系统评估深度学习模型在颈椎后纵韧带骨化症诊断中的表现,并与传统方法进行比较 研究方法存在差异,深度学习技术本身存在挑战 评估深度学习模型在颈椎后纵韧带骨化症诊断和预测中的准确性和可靠性 颈椎后纵韧带骨化症患者 数字病理学 颈椎病 深度学习 DLM 医学影像 7项研究共3,373名患者,荟萃分析包含1,016名患者
7396 2025-04-03
Advanced deep learning for multi-class colorectal cancer histopathology: integrating transfer learning and ensemble methods
2025-Mar-03, Quantitative imaging in medicine and surgery IF:2.9Q2
research paper 本研究开发了一种基于深度卷积神经网络(CNNs)的集成模型,用于结直肠癌组织病理学图像的多分类 结合迁移学习和集成方法优化深度学习模型在结直肠癌组织病理学图像分类中的性能 研究仅在一个公开数据集(EBHI)上进行了测试,未在其他数据集上验证模型的泛化能力 优化深度学习模型在结直肠癌组织病理学图像分类中的性能,以提高早期检测率和诊断准确性 结直肠癌组织病理学图像 digital pathology colorectal cancer deep learning, transfer learning, ensemble methods CNN, ensemble model image EBHI数据集(具体样本数量未提及)
7397 2025-04-03
An automatic deep learning-based bone mineral density measurement method using X-ray images of children
2025-Mar-03, Quantitative imaging in medicine and surgery IF:2.9Q2
研究论文 提出了一种基于深度学习的自动骨密度测量方法,利用儿童X射线图像进行骨密度评估 通过单次X射线图像结合等效阶梯体模,实现骨龄或损伤评估的同时测量前臂骨密度,且采用深度学习方法消除软组织对骨密度测量的影响 方法仅在500张临床X射线图像上验证,样本量相对有限 开发一种适用于临床环境的自动骨密度测量方法,以替代或补充DXA技术 儿童的手部和前臂X射线图像 数字病理 骨质疏松症 X射线成像 深度学习 图像 500张临床X射线图像
7398 2025-04-03
Enhancing bone radiology images classification through appropriate preprocessing: a deep learning and explainable artificial intelligence approach
2025-Mar-03, Quantitative imaging in medicine and surgery IF:2.9Q2
研究论文 本文通过深度学习和可解释人工智能方法,探讨了适当的预处理对骨放射学图像分类性能的提升作用 本文的创新点在于将特定的预处理技术(如去除背景和无关部分)应用于医学图像,以提高深度学习模型在分类任务中的性能,并结合XAI技术验证和说明其益处 NA 强调医学深度学习模型结果的真实性和模型及其创建者的责任,通过提出针对医学数据集的预处理方法来提高模型的性能和可靠性 骨放射学图像数据集 计算机视觉 NA 深度学习,可解释人工智能(XAI) DenseNet201等深度学习神经网络 图像 两个骨放射学图像数据集
7399 2025-04-03
A multi-scale pyramid residual weight network for medical image fusion
2025-Mar-03, Quantitative imaging in medicine and surgery IF:2.9Q2
research paper 提出了一种名为LYWNet的多尺度金字塔残差权重网络,用于医学图像融合,旨在有效整合高频细节信息和低频上下文信息 提出了一种新的CNN网络LYWNet,通过多尺度金字塔残差权重块和特征蒸馏融合算法,有效保留高频细节和低频上下文信息 未提及具体的样本量或实验数据集的规模,可能影响方法的普适性验证 改进多模态医学图像融合技术,提升临床诊断和手术导航的准确性和质量 医学图像(如SPECT-MRI、PET-MRI、MRI-CT等) digital pathology NA CNN-based image fusion CNN (LYWNet) image NA
7400 2025-04-03
Quantitative assessment and risk stratification of random acute pulmonary embolism cases using a deep learning model based on computed tomography pulmonary angiography images
2025-Mar-03, Quantitative imaging in medicine and surgery IF:2.9Q2
研究论文 本研究开发了一种结合Transformer的VB-Net深度学习模型,用于从CTPA图像中检测肺栓塞并自动计算血栓负荷评分 首次报道了结合Transformer的VB-Net深度学习模型在肺栓塞检测和血栓负荷评分自动计算中的应用 模型在随机CTPA检查中的灵敏度为76.67%,仍有提升空间 通过早期诊断、风险分层和治疗方案确定来帮助患者,改善预后并减轻放射科医生的负担 肺栓塞患者 数字病理学 肺栓塞 CTPA VB-Net结合Transformer 医学影像 2,424例CTPA检查病例(44%男性)用于训练和测试模型,另外70例随机CTPA数据(30例急性肺栓塞,40例无肺栓塞)用于验证
回到顶部