深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 29093 篇文献,本页显示第 7401 - 7420 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
7401 2025-05-12
A feasibility study of lung tumor segmentation on kilo-voltage radiographic images with transfer learning: Toward tumor motion tracking in radiotherapy
2025-Apr, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
research paper 研究通过迁移学习在千伏X射线影像上分割肺部肿瘤,以实现无标记肿瘤运动追踪 提出了一种结合迁移学习和深度分割网络陪审团委员会(TL-DSN-JC)的新算法,显著提升了肿瘤分割的准确性 研究样本量相对较小,仅包含80名患者的1150张影像,可能影响模型的泛化能力 开发一种无标记的肺部肿瘤运动追踪方法,以提高放射治疗的精确性 肺部肿瘤患者的千伏X射线影像 digital pathology lung cancer 迁移学习,深度学习 VGG-16/19, TL-DSN-JC image 1150张影像来自80名肺癌患者
7402 2025-05-12
Evaluating auto-contouring accuracy in reduced CT dose images for radiopharmaceutical therapies: Denoising and evaluation of 177Lu DOTATATE therapy dataset
2025-Apr, Journal of applied clinical medical physics IF:2.0Q3
research paper 评估在降低CT剂量图像中自动轮廓勾画的准确性,用于放射性药物治疗,特别是177Lu DOTATATE治疗数据集 使用深度学习方法(DenseNet)进行图像去噪,以支持在177Lu DOTATATE治疗期间降低CT剂量 研究仅针对177Lu DOTATATE治疗数据集,未涉及其他放射性药物治疗 评估降低CT剂量对器官分割准确性的影响,并探索去噪方法对提高剂量测定准确性的潜力 177Lu DOTATATE治疗患者的CT图像数据 digital pathology NA CT, SPECT/CT, deep learning DenseNet, TotalSegmentator image 177Lu DOTATATE患者数据集
7403 2025-05-12
GAICN: Graph Attention Iterative Contraction Network for Bioluminescence Tomography
2025-Apr, IEEE transactions on medical imaging IF:8.9Q1
研究论文 提出了一种名为GAICN的新型网络,用于生物发光断层扫描(BLT),以提高重建性能、稳定性和泛化能力 结合图注意力机制和迭代收缩激活函数,实现非局部特征聚合和动态权重调整,增强网络的泛化性、稳定性和可解释性 未明确提及具体局限性 提高生物发光断层扫描的重建性能、稳定性和泛化能力 生物发光断层扫描(BLT)中的光源分布 数字病理 NA 深度学习 GAICN(Graph Attention Iterative Contraction Network) 三维肿瘤信息 仿真和体内实验
7404 2025-05-12
Segmenting the Inferior Alveolar Canal in CBCTs Volumes: The ToothFairy Challenge
2025-Apr, IEEE transactions on medical imaging IF:8.9Q1
research paper 本文介绍了ToothFairy挑战赛的细节及其参与者在分割下牙槽管(IAC)方面的贡献 首次在公共基准数据集上对IAC分割方法进行全面比较评估,并发布了最大的公开CBCT扫描数据集 数据集中的153个扫描有体素级注释,其余290个扫描可能缺乏详细注释 促进深度学习在下牙槽管分割领域的研究,并提供公共基准数据集 下牙槽管(IAC)在CBCT扫描中的分割 digital pathology NA Cone-Beam Computed Tomography (CBCT) NA 3D medical images 443 CBCT scans (153 with voxel-level annotations)
7405 2025-05-12
Training-Free Image Style Alignment for Domain Shift on Handheld Ultrasound Devices
2025-Apr, IEEE transactions on medical imaging IF:8.9Q1
研究论文 提出了一种无需训练的图像风格对齐方法(TISA),用于解决手持超声设备数据与标准设备数据之间的领域偏移问题 TISA无需源数据,能够在测试时转换图像风格并保留空间上下文,且避免了预训练模型的持续更新 未提及具体的数据集规模或实验条件的限制 解决手持超声设备数据与标准设备数据之间的领域偏移问题,提升自动诊断的准确性和稳定性 手持超声设备数据 计算机视觉 NA 图像风格对齐 NA 图像 NA
7406 2025-05-12
Enhanced DTCMR With Cascaded Alignment and Adaptive Diffusion
2025-Apr, IEEE transactions on medical imaging IF:8.9Q1
research paper 提出了一种结合张量信息的深度学习框架,用于群组可变形配准,有效校正DTCMR中的帧间运动 引入了级联配准分支和平行分支的新框架,结合精炼的损失函数和去噪技术,显著提高了DTCMR成像的准确性 未提及方法在极端运动情况下的表现,以及在不同设备或采集参数下的泛化能力 改进扩散张量心血管磁共振成像(DTCMR)的帧间运动校正,提高临床生物标志物张量估计的准确性 心肌微结构的可视化 digital pathology cardiovascular disease diffusion tensor cardiovascular magnetic resonance (DTCMR) deep learning framework image 超过900例病例数据(2012-2023年)
7407 2025-05-12
Amyloid-β Deposition Prediction With Large Language Model Driven and Task-Oriented Learning of Brain Functional Networks
2025-Apr, IEEE transactions on medical imaging IF:8.9Q1
研究论文 该论文提出了一种基于大型语言模型和任务导向学习的大脑功能网络预测淀粉样蛋白沉积的新方法 1) 预训练的大型语言模型节点嵌入编码器,用于从fMRI信号中提取任务相关特征;2) 任务导向的分层功能连接网络学习模块,增强不同脑区复杂关联的表示;3) 任务特征一致性损失,促进预测与真实淀粉样蛋白值的相似性 NA 开发一种基于功能连接网络的淀粉样蛋白沉积预测方法,以替代昂贵且具有高放射性的正电子发射断层扫描 阿尔茨海默病患者的大脑功能连接网络 数字病理学 阿尔茨海默病 fMRI 大型语言模型 功能磁共振成像数据 NA
7408 2025-05-12
CTUSurv: A Cell-Aware Transformer-Based Network With Uncertainty for Survival Prediction Using Whole Slide Images
2025-Apr, IEEE transactions on medical imaging IF:8.9Q1
研究论文 提出了一种基于细胞感知的Transformer网络CTUSurv,用于全切片图像的生存预测,并引入不确定性估计框架以提高预测的可靠性 首次结合细胞间及细胞与微环境相互作用建模,并开发区域级不确定性估计模块 未明确说明模型在临床环境中的实际部署可行性 提升全切片图像生存预测的准确性和可信度 全切片图像中的细胞及微环境特征 数字病理学 NA 深度学习 Transformer 全切片图像(WSI) 四个数据集(未明确样本数量)
7409 2025-05-12
Developing Brain-Based Bare-Handed Human-Machine Interaction via On-Skin Input
2025-Apr, IEEE transactions on cybernetics IF:9.4Q1
研究论文 提出了一种名为MetaSkin的新型神经触觉接口,通过整合神经信号与皮肤交互,实现无需视觉参与的手势交互 首次将神经信号与皮肤交互结合,利用人类自然本体感觉能力实现无需视觉的手势交互,并开发了深度学习框架来解码神经信号 需要优化系统以适应不同用户群体和动态环境 开发自然、直观、以人为中心的移动人机交互输入系统 人机交互系统 人机交互 NA 深度学习 NA 神经信号 12名参与者
7410 2025-05-12
Use of deep learning model for paediatric elbow radiograph binomial classification: initial experience, performance and lessons learnt
2025-04-01, Singapore medical journal IF:1.7Q2
research paper 本研究比较了基于卷积神经网络(CNN)的深度学习模型与儿科急诊医生在儿童肘部X光片二分类任务上的表现 使用EfficientNet B1网络架构训练AI模型,首次在儿童肘部X光片二分类任务中与医生表现进行对比 样本量相对较小(1314张X光片),医生间一致性仅为一般水平(fair inter-rater agreement) 评估深度学习模型在儿童肘部X光片异常检测中的性能 儿童肘部侧位X光片(正常与异常) digital pathology NA deep learning CNN (EfficientNet B1) image (radiographs) 1314张儿科肘部X光片(平均年龄8.2岁),分为开发集(993张)、调优集(209张)和测试集(112张)
7411 2025-05-12
Transformer-based deep learning enables improved B-cell epitope prediction in parasitic pathogens: A proof-of-concept study on Fasciola hepatica
2025-Apr, PLoS neglected tropical diseases IF:3.4Q1
研究论文 本文介绍了一种基于Transformer的深度学习模型deepBCE-Parasite,用于预测寄生虫病原体中的B细胞表位 利用最先进的自注意力机制,模型在预测线性B细胞表位方面表现出色,准确率约为81%,AUC为0.90 研究仅针对Fasciola hepatica进行了案例验证,未在其他寄生虫病原体上广泛测试 提高B细胞表位的预测准确性,推动基于表位的疫苗设计、治疗性抗体开发和诊断应用 寄生虫病原体中的B细胞表位,特别是Fasciola hepatica的亮氨酸氨基肽酶(LAP)蛋白 机器学习 寄生虫病 深度学习 Transformer 肽序列 Fasciola hepatica的蛋白质组数据
7412 2025-05-12
Technical note: Impact of tissue section thickness on accuracy of cell classification with a deep learning network
2025-Apr, Journal of pathology informatics
研究论文 研究组织切片厚度对深度学习网络细胞分类准确性的影响 确定了用于细胞分类系统的最佳组织切片厚度,并详细描述了不同厚度引入的形态学差异 研究仅针对肝脏组织,未涉及其他组织类型 优化深度学习网络在常规组织病理学中的细胞分类准确性 肝脏组织中的肝细胞和非肝细胞 数字病理学 NA HE染色、深度学习 ResNet、随机森林 图像 手动切割的5种厚度肝脏切片和自动切片机(DS)切割的切片
7413 2025-05-12
Enhanced EEG Forecasting: A Probabilistic Deep Learning Approach
2025-Mar-18, Neural computation IF:2.7Q3
研究论文 本文提出了一种基于概率深度学习的增强型EEG预测方法,用于改进脑电图信号的长期预测 首次将概率深度学习方法WaveNet应用于静息态EEG时间序列预测,并在theta和alpha频段实现了150毫秒的可靠预测 研究仅针对静息态EEG的theta和alpha频段进行测试,未涉及其他脑电频段或任务态脑电 改进EEG信号的长期预测准确性,以增强实时脑状态估计在脑机接口和脑刺激协议中的应用 静息态EEG信号(theta和alpha频段) 机器学习 NA 概率深度学习 WaveNet 时间序列数据(EEG信号) 未明确说明样本数量
7414 2025-05-12
Exploring the application of deep learning methods for polygenic risk score estimation
2025-Mar-13, Biomedical physics & engineering express IF:1.3Q3
research paper 探索深度学习在多基因风险评分(PRS)估计中的应用 使用深度学习模型生成多个PRS,并展示其在数据缺失情况下的性能 进一步改进可能需要额外的输入数据 研究深度学习如何改进PRS的生成 UK Biobank数据中的已知PRS machine learning NA deep learning DL models genetic data UK Biobank数据
7415 2025-05-12
[Scale-invariant feature-enhanced deep learning framework for oral mucosal lesion segmentation]
2025-Mar-09, Zhonghua kou qiang yi xue za zhi = Zhonghua kouqiang yixue zazhi = Chinese journal of stomatology
research paper 提出了一种结合深度学习和SIFT算法的新型语义分割模型PixelSIFT-UNet,用于提高口腔黏膜病变的分割准确性 整合了深度学习和SIFT算法,开发了PixelSIFT-UNet模型,显著提高了分割精度 研究仅针对三种常见的口腔黏膜病变,可能不适用于其他类型的病变 提高口腔黏膜病变的语义分割准确性 口腔黏膜病变(口腔扁平苔藓、口腔白斑和口腔黏膜下纤维化) digital pathology oral mucosal lesions scale-invariant feature transform (SIFT), deep learning PixelSIFT-UNet, VGG-16, ResNet-50, U-Net, PSPNet image 838张标准临床白光图像(训练集506张,验证集166张,测试集166张)
7416 2025-03-05
[Advances in breast cancer tumor-infiltrating lymphocytes evaluation and deep learning applications]
2025-Mar-08, Zhonghua bing li xue za zhi = Chinese journal of pathology
NA NA NA NA NA NA NA NA NA NA NA NA
7417 2025-05-12
Sugarcane leaf disease classification using deep neural network approach
2025-Mar-04, BMC plant biology IF:4.3Q1
研究论文 本文开发了一种基于深度学习的可靠模型,用于准确诊断甘蔗叶片病害 使用EfficientNet架构及其他知名CNN模型(如DenseNet201、ResNetV2等)进行甘蔗叶片病害分类,并验证了模型在不同数据集划分中的一致性和可靠性 未发现模型复杂度、深度与准确率之间的直接相关性,表明最佳性能不仅依赖于模型架构或深度,还依赖于其对数据集的适应性 开发一种可靠的深度学习模型,以准确诊断甘蔗叶片病害,提高病害控制和甘蔗产量 甘蔗叶片 计算机视觉 植物病害 深度学习 EfficientNet, DenseNet201, ResNetV2, InceptionV4, MobileNetV3, RegNetX 图像 6748张健康与病害叶片图像,涵盖11种病害类别
7418 2025-05-12
An Efficient Approach for Detection of Various Epileptic Waves Having Diverse Forms in Long Term EEG Based on Deep Learning
2025-Mar-04, Brain topography IF:2.3Q3
研究论文 本文提出了一种基于深度学习的有效方法,用于检测长期脑电图(EEG)中多种形式的癫痫波 利用YOLO网络(特别是YOLO-V4)进行癫痫波检测,展示了高灵敏度、特异性和准确性 需要专家癫痫学家的指导进行数据标注,且样本量较小(20名患者) 开发一种快速、高效的癫痫波检测方法,以辅助癫痫学家进行长期EEG监测 长期EEG监测数据中的多种癫痫波形式 数字病理学 癫痫 深度学习 YOLO(V3、V4和V7) EEG信号 20名患者的EEG数据
7419 2025-05-12
CryoTEN: efficiently enhancing cryo-EM density maps using transformers
2025-Mar-04, Bioinformatics (Oxford, England)
研究论文 本文介绍了一种名为CryoTEN的3D UNETR++风格transformer,用于有效提升冷冻电镜密度图的质量 提出了一种基于transformer的新型深度学习模型CryoTEN,其在提升冷冻电镜密度图质量方面表现优异,且运行速度比现有最优方法快10倍以上,GPU内存需求更低 NA 提升冷冻电镜密度图的质量,以更好地构建蛋白质结构 冷冻电镜密度图 计算机视觉 NA 冷冻电镜(cryo-EM) 3D UNETR++ transformer 3D冷冻电镜密度图 训练集包含1295个冷冻电镜图,独立测试集包含150个图
7420 2025-05-12
Evolution of AI enabled healthcare systems using textual data with a pretrained BERT deep learning model
2025-Mar-04, Scientific reports IF:3.8Q1
research paper 该研究利用文本挖掘和深度学习算法,特别是BERT模型,分析了2018年至2022年间科学论文和专利信息,以揭示AI在医疗保健领域的未来趋势 首次在医疗保健AI领域引入深度学习自监督模型(BERT),显著提高了分析的准确性和效率 研究主要依赖于2018年至2022年的数据,可能无法完全反映最新的技术发展 揭示AI在医疗保健领域的新兴趋势和潜在未来路径 科学论文(1587篇)和专利信息(1314项) natural language processing NA text mining, BERT BERT text 科学论文1587篇,专利信息1314项
回到顶部