深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 36487 篇文献,本页显示第 7421 - 7440 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
7421 2025-09-12
HarmonicEchoNet: Leveraging harmonic convolutions for automated standard plane detection in fetal heart ultrasound videos
2025-Dec, Medical image analysis IF:10.7Q1
研究论文 提出轻量级深度学习模型HarmonicEchoNet,用于胎儿心脏超声视频中标准切面的自动检测 引入谐波卷积块(HCBs)和空间通道压缩激励模块(hscSE),结合离散余弦变换进行特征分解,提升模型效率和准确性 使用两个私有数据集(PULSE和CAIFE),可能限制模型泛化能力 实现胎儿心脏超声标准切面的自动化检测 胎儿心脏超声视频 计算机视觉 心血管疾病 超声成像,离散余弦变换(DCT) CNN(谐波卷积网络) 视频(超声图像序列) 四个数据集(来自PULSE和CAIFE两个研究) NA NA NA NA
7422 2025-09-12
Completing spatial transcriptomics data for gene expression prediction benchmarking
2025-Dec, Medical image analysis IF:10.7Q1
研究论文 本文介绍了一个用于基因表达预测基准测试的系统性数据库SpaRED和一个基于Transformer的基因表达补全模型SpaCKLE 提出了首个系统性整理的26个公共数据集标准化资源,并开发了基于Transformer的先进补全模型,将均方误差降低82.5% NA 解决空间转录组学数据获取成本高、技术门槛高和数据丢失问题,建立标准化基准测试平台 空间转录组学数据,特别是Visium技术产生的组织学图像和基因表达数据 数字病理学 NA 空间转录组学,Visium技术,深度学习 Transformer 图像,基因表达数据 26个公共数据集 NA NA NA NA
7423 2025-09-12
Leveraging sparse annotations for leukemia diagnosis on the large leukemia dataset
2025-Dec, Medical image analysis IF:10.7Q1
研究论文 提出大规模白血病数据集LLD及稀疏标注方法,用于白细胞检测与形态属性分析 构建首个大规模多任务白血病数据集,并提出基于稀疏标注的属性分析方法以减少标注负担 数据集仅包含48名患者,样本多样性可能仍有限 提升白血病诊断的可解释性和现实应用性 白细胞(WBC)的定位、分类及形态属性评估 数字病理学 白血病 外周血涂片(PBF)显微成像,多显微镜/多相机/多放大倍数采集 多任务模型 显微图像 48名患者的外周血涂片数据 NA NA NA NA
7424 2025-09-12
Short- and long-term captivity impacts on bird memory, corticosterone level, and oxidative stress genes: Perspectives on deep learning analysis
2025-Nov-01, Physiology & behavior IF:2.4Q2
研究论文 研究短期和长期圈养对鸟类记忆、皮质酮水平和氧化应激基因的影响,并利用深度学习分析鸟类行为 首次结合深度学习(VGG16神经网络)分析鸟类器官运动,并综合评估圈养压力对多种鸟类行为、激素及基因表达的跨物种影响 研究仅针对三种鸟类(冠小嘴乌鸦、家八哥、牛背鹭),样本多样性有限,且未涉及野外对照组的长期追踪 探究圈养压力对鸟类认知行为、生理指标及基因表达的短期与长期影响 冠小嘴乌鸦(Corvus cornix)、家八哥(Acridotheres tristis)、牛背鹭(Bubulcus ibis)三种鸟类 动物行为学与计算生物学交叉 NA qRT-PCR(基因表达分析)、深度学习视频分析 VGG16(CNN架构) 视频(鸟类行为记录)、分子生物学数据(激素与基因表达) 三种鸟类物种(未明确个体数量),通过视频片段进行行为分析 NA NA NA NA
7425 2025-09-12
Deploying a novel deep learning framework for segmentation of specific anatomical structures on cone-beam CT
2025-Oct, Oral radiology IF:1.6Q3
研究论文 本研究开发了一种基于深度学习的新型框架,用于在锥束CT图像上自动分割特定解剖结构 采用nnUNetv2框架实现高精度解剖结构分割,在牙科CBCT图像处理中表现出色 样本量相对较小(70名患者),且下颌管分割性能相对较低 通过深度学习算法自动预测CBCT图像中的解剖结构,以增强诊断和治疗规划流程 70名患者的CBCT图像数据,包含鼻腔、上颌窦、腭前管、下颌管等解剖结构 计算机视觉 NA 锥束CT成像,深度学习分割 nnUNetv2 医学影像 70名患者的CBCT数据,共28,350个切片(每例405个切片) NA NA NA NA
7426 2025-09-12
Beyond explainable AI: Enhancing trust and robustness in machine learning for sleep apnea diagnosis
2025-Oct, Sleep medicine reviews IF:11.2Q1
评论 本文扩展了对睡眠呼吸暂停诊断中机器学习可解释性工具的批判,提出结合无监督ML和非线性非参数统计方法的综合策略以增强临床信任 主张超越传统XAI方法,通过无监督学习和统计方法结合来验证特征重要性并减少模型偏差 未提供具体实验验证或实际临床数据支持所提出方法的有效性 提升机器学习在睡眠呼吸暂停诊断中的可信度和鲁棒性 睡眠呼吸暂停诊断的机器学习模型及其特征解释方法 machine learning 睡眠呼吸暂停 无监督ML(特征聚合、高变基因选择),非线性非参数统计方法(如Spearman相关) NA NA NA NA NA NA NA
7427 2025-09-12
Application of Convolutional Neural Network Image Analysis and Machine Learning to Basic Blood Tests for Intelligent Diagnostic Assistance
2025-Sep-11, International journal of laboratory hematology IF:2.2Q3
研究论文 开发基于卷积神经网络和机器学习的血液细胞图像识别与诊断辅助系统,用于智能血液疾病诊断 结合外周血细胞形态图像识别与全血细胞计数数据,构建诊断辅助深度学习系统,实现高精度细胞分类和疾病区分 研究仅基于特定血液分析仪(Sysmex XN-9000)数据,未涉及其他设备或多中心验证 评估血液细胞图像识别深度学习系统及诊断辅助系统在常规检查中的临床性能 健康受试者及ALL、AML、ML、MPN、MDS患者的血液样本 计算机视觉 血液疾病 深度学习图像分析、血液细胞形态学识别 CNN 图像、数值数据 1,476,727张血液细胞图像用于训练,128,716张图像(来自589份涂片)用于评估 NA NA NA NA
7428 2025-09-12
Artificial intelligence in gastric cancer: a systematic review of machine learning and deep learning applications
2025-Sep-11, Abdominal radiology (New York)
系统综述 本文系统评估了机器学习和深度学习在胃癌管理中的应用、性能及局限性 全面总结了AI在胃癌早期检测、诊断、治疗规划和预后预测中的跨模态应用性能 存在算法偏差、数据集多样性不足、可解释性差及临床整合障碍 评估ML和DL模型在胃癌管理中的表现与应用 胃癌患者的临床影像和多模态数据 数字病理 胃癌 机器学习、深度学习 CNN 内镜图像、CT影像、病理图像、多模态数据 59项符合纳入标准的研究 NA NA NA NA
7429 2025-09-12
Identifying 14-3-3 interactome binding sites with deep learning
2025-Sep-10, Digital discovery IF:6.2Q1
研究论文 开发深度学习框架预测蛋白质与14-3-3蛋白的结合位点 首次构建集成深度学习模型预测14-3-3相互作用组结合位点,尤其针对内在无序蛋白 模型在外部序列上平衡准确率为75%,仍有提升空间;实验验证仅覆盖8个预测肽段 预测蛋白质与14-3-3蛋白的结合位点以理解细胞信号网络 14-3-3蛋白及其相互作用蛋白质(约300个序列) 生物信息学 阿尔茨海默病(涉及tau蛋白结合) 深度学习、X射线晶体学、分子动力学模拟 集成深度学习模型 蛋白质序列数据 约300个医学相关蛋白质序列,实验验证8个预测肽段 NA NA NA NA
7430 2025-09-12
Enhancing Protein Structure Learning using a Size-Guided Conditional Mixture-of-Experts
2025-Sep-10, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 提出一种基于蛋白质大小引导的条件混合专家模型,用于提升蛋白质结构深度学习性能 首次将蛋白质大小作为先验知识引入深度学习框架,通过条件混合专家模型自适应激活子网络 NA 改进蛋白质结构深度学习方法,提升蛋白质性质预测精度 蛋白质结构与性质 机器学习 NA 深度学习 条件混合专家模型(Conditional Mixture-of-Experts) 蛋白质结构表示 在8个任务、2种蛋白质表示形式、3种数据集划分共48种测试设置上进行验证 NA NA NA NA
7431 2025-09-12
Enhancing Automated Seizure Detection via Self-Calibrating Spatial-Temporal EEG Features with SC-LSTM
2025-Sep-10, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 提出一种新型混合深度学习架构SC-LSTM,通过自适应时空特征提取增强癫痫发作自动检测 整合自校准空间特征重建模块(SCConvNet)和双向LSTM网络,实现并行时空特征提取,显著提升对患者特异性EEG变异的捕捉能力 仅在新生儿EEG数据集上验证,未明确说明模型在其他年龄组或癫痫类型的泛化能力 开发高精度、稳定的自动化癫痫发作检测方法以支持个体化诊断 新生儿癫痫患者的脑电图(EEG)信号 机器学习 癫痫 脑电图(EEG)分析,K折交叉验证 SC-LSTM(自校准卷积网络与双向LSTM的混合架构) 多通道时间序列EEG信号 两个真实世界新生儿EEG数据集(具体样本量未明确说明) NA NA NA NA
7432 2025-09-12
InterVelo: A Mutually Enhancing Model for Estimating Pseudotime and RNA Velocity in Multi-Omic Single-Cell Data
2025-Sep-10, Bioinformatics (Oxford, England)
研究论文 提出InterVelo深度学习框架,用于在多组学单细胞数据中同时估计伪时间和RNA速率 通过无监督细胞时间引导RNA速率估计,同时利用RNA速率优化伪时间方向,实现双向增强学习 NA 改进单细胞数据中转录动态的推断精度 多组学单细胞数据 计算生物学 NA 单细胞多组学测序 深度学习框架 单细胞多组学数据 模拟和真实数据集(未指定具体样本数量) NA NA NA NA
7433 2025-09-12
Attention Gated-VGG with deep learning-based features for Alzheimer's disease classification
2025-Sep-10, Neurodegenerative disease management IF:2.3Q3
研究论文 提出基于注意力门控VGG和深度学习的特征提取方法用于阿尔茨海默病分类 结合WOA-based ResNet特征提取和注意力门控VGG模型,在AD分类中实现高精度 NA 早期检测和分类阿尔茨海默病 阿尔茨海默病患者影像数据 计算机视觉 阿尔茨海默病 深度学习,图像预处理,数据增强 Attention Gated-VGG, CNN, ResNet 图像 NA NA NA NA NA
7434 2025-09-12
Explainable Deep Learning Framework for Classifying Mandibular Fractures on Panoramic Radiographs
2025-Sep-10, The Journal of craniofacial surgery IF:1.0Q3
研究论文 开发基于全景X光片的可解释深度学习框架,用于自动分类下颌骨骨折 结合新颖的临床相关分类系统和可解释AI技术(Grad-CAM和LIME)提升模型决策透明度 需要更大规模、多机构数据集进一步验证泛化能力 实现下颌骨骨折的自动分类以辅助颌面创伤诊疗 下颌骨骨折患者 计算机视觉 颌面创伤 全景X光成像 CNN 图像 800张来自面部创伤患者的全景X光片 NA NA NA NA
7435 2025-09-12
Evaluation of deep learning-based segmentation models for carotid artery calcification detection in panoramic radiographs
2025-Sep-10, Oral radiology IF:1.6Q3
研究论文 本研究评估了基于YOLO的深度学习分割模型在全景X光片中检测颈动脉钙化的效果 比较了三种YOLO分割模型(YOLOv5x-seg、YOLOv8x-seg、YOLOv11x-seg)在颈动脉钙化检测中的性能,并探讨了性别与钙化存在的关联 需要更大规模和更多样化的数据集来验证模型的泛化能力和有效性 评估人工智能辅助分割方法在全景X光片中检测颈动脉钙化的有效性 全景X光片中的颈动脉钙化区域 计算机视觉 心血管疾病 深度学习分割 YOLOv5x-seg, YOLOv8x-seg, YOLOv11x-seg 医学影像 30,883张全景X光片扫描,其中652张包含1,086个钙化标注 NA NA NA NA
7436 2025-09-12
Automatic infant 2D pose estimation from videos: Comparing seven deep neural network methods
2025-Sep-10, Behavior research methods IF:4.6Q1
研究论文 比较七种深度神经网络方法在婴儿视频中自动进行2D姿态估计的性能 首次系统评估主流姿态估计方法在婴儿视频上的表现,并引入基于躯干长度的误差指标及检测可靠性分析 方法主要在成人数据上训练,未针对婴儿进行专门微调(除DeepLabCut和MediaPipe外) 评估和比较深度学习模型在婴儿姿态估计任务中的性能 婴儿视频数据(包含仰卧位和复杂场景) 计算机视觉 NA 深度学习,机器学习 AlphaPose, DeepLabCut/DeeperCut, Detectron2, HRNet, MediaPipe/BlazePose, OpenPose, ViTPose 视频 NA NA NA NA NA
7437 2025-09-12
CCLR-DL: A novel statistics and deep learning hybrid method for feature selection and forecasting healthcare demand
2025-Sep-07, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 提出一种结合统计方法与深度学习的混合框架CCLR-DL,用于医疗需求预测的特征选择和时序预测 首次将因果统计选择(包括交叉相关分析、滞后线性回归和格兰杰因果检验)与神经网络预测结合,兼顾预测精度与可解释性 NA 提升高维多元时间序列预测的准确性和模型透明度 医疗需求预测 机器学习 NA 交叉相关分析、滞后多元线性回归、格兰杰因果检验 BiLSTM 时间序列数据 630万个体10年间的临床就诊和诊断数据 NA NA NA NA
7438 2025-09-12
Advanced digital image forensics: A hybrid framework for copy-move forgery detection in multimedia security
2025-Sep, Journal of forensic sciences IF:1.5Q2
研究论文 提出一种用于多媒体安全中复制-移动伪造检测的混合框架,结合频域滤波、关键点提取、深度学习模型和聚类技术 整合FFT频域滤波、SIFT与ORB关键点提取、MobilenetV2和VGG16特征提取以及注意力机制,提升检测准确性和鲁棒性 NA 开发高精度数字图像伪造检测方法,保障图像完整性验证 数字图像及其可能存在的复制-移动伪造区域 计算机视觉 NA 快速傅里叶变换(FFT)、SIFT、ORB、DBSCAN聚类、注意力机制 MobilenetV2, VGG16 图像 基于五个基准复制-移动伪造数据集进行广泛测试 NA NA NA NA
7439 2025-09-12
Early diagnosis of mild cognitive impairment and Alzheimer's disease using multimodal feature-based deep learning models in a Chinese elderly population
2025-Sep, Asian journal of psychiatry IF:3.8Q1
研究论文 本研究利用基于多模态特征(ERP和中医体质)的深度学习模型,在中国老年人群中实现轻度认知障碍和阿尔茨海默病的早期诊断 首次融合事件相关电位(ERP)和中医体质特征,并采用图卷积网络(GCN)进行跨被试分类,在认知障碍早期诊断中表现出色 样本量较小(共90名参与者),且仅针对中国老年人群,结果泛化性需进一步验证 评估基于融合ERP和中医特征的深度学习模型在认知障碍跨被试分类中的效能 中国老年人群(包括健康对照组、轻度认知障碍患者和阿尔茨海默病患者) 机器学习 老年疾病 ERP(事件相关电位)、中医体质问卷、深度学习 EEGNet、CNN-LSTM、GCN(图卷积网络)、多尺度特征重建GCN、多层感知机 脑电信号、问卷数据 90名参与者(30名健康对照、30名MCI患者、30名AD患者) NA NA NA NA
7440 2025-09-12
Spectral computed tomography thermometry for thermal ablation: applicability and needle artifact reduction
2025-Sep, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
研究论文 评估光谱CT测温在微波消融中的适用性,并比较基于衰减与基于物理密度的测温方法,同时探索最优金属伪影减少技术 首次系统比较光谱CT中基于衰减和基于物理密度的测温方法,并测试多种MAR技术(包括O-MAR、深度学习MAR和光谱CT组合)对测温精度的影响 研究基于体外凝胶模型,未涉及人体组织;样本量较小(4个模型,23次扫描) 提高肝肿瘤热消融过程中温度监测的精确性和可靠性 肝肿瘤热消融过程中的温度分布 医学影像 肝肿瘤 光谱CT,微波消融,金属伪影减少(MAR)技术 NA CT影像 4个嵌入温度传感器的凝胶模型,进行23次CT扫描 NA NA NA NA
回到顶部