深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 25309 篇文献,本页显示第 7461 - 7480 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
7461 2025-03-11
Adapting physics-informed neural networks to improve ODE optimization in mosquito population dynamics
2024, PloS one IF:2.9Q1
研究论文 本文提出了一种改进的物理信息神经网络(PINN)框架,用于解决蚊子种群动态建模中的ODE优化问题 提出了一种改进的PINN框架,解决了梯度不平衡和刚性ODE问题,并通过逐步扩展训练时间域来解决时间因果关系问题 当前PINN框架在现实世界的ODE系统中还不够成熟,尤其是在具有极端多尺度行为的系统中 改进物理信息神经网络在ODE系统中的应用,特别是用于蚊子种群动态建模 蚊子种群动态建模 机器学习 NA 物理信息神经网络(PINN) PINN 模拟数据 NA
7462 2025-03-11
Application of deep learning models for detection of subdural hematoma: a systematic review and meta-analysis
2023-10, Journal of neurointerventional surgery IF:4.5Q1
NA NA NA NA NA NA NA NA NA NA NA NA
7463 2025-03-11
Response to 'Application of deep learning models for detection of subdural hematoma: a systematic review and meta-analysis'
2023-10, Journal of neurointerventional surgery IF:4.5Q1
NA NA NA NA NA NA NA NA NA NA NA NA
7464 2025-03-11
Letter re: Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review: Label-free diagnostic technique to differentiate cancer cells from healthy cells
2022-09, European journal of cancer (Oxford, England : 1990)
NA NA NA NA NA NA NA NA NA NA NA NA
7465 2025-03-11
Response to letter entitled: Re: Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review
2022-09, European journal of cancer (Oxford, England : 1990)
NA NA NA NA NA NA NA NA NA NA NA NA
7466 2025-03-11
Artificial Intelligence-Enabled Analysis of Public Attitudes on Facebook and Twitter Toward COVID-19 Vaccines in the United Kingdom and the United States: Observational Study
2021-04-05, Journal of medical Internet research IF:5.8Q1
研究论文 本研究开发并应用了一种基于人工智能的方法,分析英国和美国社交媒体上关于COVID-19疫苗的公众情绪,以更好地理解公众对COVID-19疫苗的态度和担忧 利用自然语言处理和深度学习技术,对社交媒体数据进行情感分析和主题识别,以实时评估公众对COVID-19疫苗的信心和信任 研究依赖于社交媒体数据,可能无法完全代表所有公众的意见,且数据时间范围有限 分析英国和美国公众对COVID-19疫苗的态度和担忧,以指导教育和政策干预 英国和美国的社交媒体用户 自然语言处理 COVID-19 自然语言处理,深度学习 深度学习模型 文本 超过300,000条社交媒体帖子,包括英国的23,571条Facebook帖子和40,268条推文,美国的144,864条Facebook帖子和98,385条推文
7467 2025-03-11
Re: An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening
2020-01-01, Journal of the National Cancer Institute
NA NA NA NA NA NA NA NA NA NA NA NA
7468 2025-03-11
An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening
2019-09-01, Journal of the National Cancer Institute
研究论文 本研究开发了一种基于深度学习的视觉评估算法,用于自动识别宫颈癌前病变/癌症 利用深度学习技术自动评估宫颈图像,提高了宫颈癌筛查的准确性和可重复性 研究依赖于历史数据,可能无法完全反映当前技术的最新进展 开发一种自动识别宫颈癌前病变/癌症的视觉评估算法 9406名18-94岁的女性,来自哥斯达黎加瓜纳卡斯特地区 计算机视觉 宫颈癌 深度学习 深度学习算法 图像 9406名女性,年龄18-94岁
7469 2025-03-10
Forecasting the eddying ocean with a deep neural network
2025-Mar-06, Nature communications IF:14.7Q1
研究论文 本文开发了一个名为WenHai的数据驱动全球海洋预报系统,通过训练深度神经网络来预测海洋中尺度涡旋的短期演变 首次将深度神经网络应用于全球海洋预报系统,并结合动量、热量和淡水通量的体公式来改进海气相互作用的表示 由于大气和海洋的动态特性不同,AI方法在海洋预报中的应用仍具有挑战性 提高全球海洋预报能力,特别是中尺度涡旋的短期演变预测 海洋中尺度涡旋 机器学习 NA 深度神经网络 DNN 海洋数据 NA
7470 2025-03-10
Classifying microfossil radiolarians on fractal pre-trained vision transformers
2025-Mar-06, Scientific reports IF:3.8Q1
研究论文 本文探讨了使用预训练的视觉变换器(ViT)和公式驱动的监督学习(FDSL)技术对微化石(放射虫)进行分类的效果 首次将视觉变换器(ViT)和公式驱动的监督学习(FDSL)应用于地质学中的微化石分类,相比传统CNN模型,平均精度提高了6-8% 未提及具体样本量和数据集的多样性,可能影响模型的泛化能力 探索新的深度学习技术在地质学图像分类中的应用 微化石(放射虫) 计算机视觉 NA 公式驱动的监督学习(FDSL) 视觉变换器(ViT) 图像 NA
7471 2025-03-10
Deep learning-based image analysis in muscle histopathology using photo-realistic synthetic data
2025-Mar-06, Communications medicine IF:5.4Q1
研究论文 本文介绍了一种名为SYNTA的新方法,用于生成逼真的合成生物医学图像数据,以解决当前生成模型和基于深度学习的图像分析中的挑战 SYNTA方法采用完全参数化的方法创建针对特定生物医学任务的逼真合成训练数据集,解决了现有生成模型缺乏代表性和高质量真实数据的问题 需要进一步验证SYNTA方法在其他生物医学领域的适用性和效果 旨在通过生成逼真的合成生物医学图像数据,改进和加速生物医学图像分析 肌肉组织病理学和骨骼肌分析 数字病理学 NA 深度学习和生成模型 GAN, Diffusion Models 图像 两个真实世界的数据集
7472 2025-03-10
Frequency transfer and inverse design for metasurface under multi-physics coupling by Euler latent dynamic and data-analytical regularizations
2025-Mar-06, Nature communications IF:14.7Q1
研究论文 本文提出了一种多物理深度学习框架(MDLF),用于解决频率转移和多物理耦合问题,并在超表面设计中实现了未见频率段的预测 提出了结合多保真度DeepONet、欧拉潜在动态网络和数据解析反演网络的MDLF框架,能够在缺乏多物理响应知识的情况下,通过动态利用欧拉潜在空间和单物理信息,实现对未见频率段的预测 需要进一步验证在更广泛的多物理耦合场景下的适用性 解决频率转移问题,并实现超表面在未见频率段的多物理耦合预测 超表面 机器学习 NA 多物理深度学习框架(MDLF) DeepONet, 欧拉潜在动态网络, 数据解析反演网络 频谱数据 NA
7473 2025-03-10
CUGUV: A Benchmark Dataset for Promoting Large-Scale Urban Village Mapping with Deep Learning Models
2025-Mar-06, Scientific data IF:5.8Q1
研究论文 本文介绍了CUGUV基准数据集,旨在通过深度学习模型促进大规模城中村(UV)的映射 提出了一个包含来自中国15个主要城市的数千个UV样本的基准数据集,并开发了一个创新的框架,有效整合和学习了多种数据源,以更好地解决跨城市UV映射任务 数据集主要集中在中国的城市,可能限制了其全球适用性 提高大规模城中村映射的准确性和模型的可转移性 城中村(UV) 计算机视觉 NA 深度学习 NA 卫星图像 数千个UV样本,来自中国15个主要城市
7474 2025-03-10
Systematic review and meta-analysis of artificial intelligence in classifying HER2 status in breast cancer immunohistochemistry
2025-Mar-06, NPJ digital medicine IF:12.4Q1
meta-analysis 本文通过诊断性meta分析评估了人工智能在分类HER2免疫组化评分中的表现,展示了其在预测T-DXd资格方面的高准确性 首次系统评估了人工智能在HER2免疫组化评分分类中的表现,并揭示了深度学习和基于补丁的分析方法在提高准确性方面的优势 在外部验证和使用商业化算法的研究中,AI的表现有所下降 评估人工智能在分类HER2免疫组化评分中的准确性和潜力 乳腺癌患者的HER2免疫组化评分 digital pathology breast cancer 免疫组化(IHC) 深度学习 图像 NA
7475 2025-03-10
Signature-based intrusion detection using machine learning and deep learning approaches empowered with fuzzy clustering
2025-Jan-11, Scientific reports IF:3.8Q1
研究论文 本研究旨在通过结合机器学习和深度学习方法改进网络安全中的入侵检测 结合了多种机器学习(如SVM、KNN、RF、DT)和深度学习(如LSTM、ANN)模型,并引入了模糊聚类技术,以提高入侵检测的准确性和效率 未提及具体的样本大小或数据集细节,可能限制了结果的普适性 提高网络安全性,通过改进入侵检测系统(IDS)来识别和预防网络攻击 网络流量数据 机器学习 NA 模糊聚类 SVM, KNN, RF, DT, LSTM, ANN 网络流量数据 NA
7476 2025-03-10
Deep learning-driven ultrasound equipment quality assessment with ATS-539 phantom data
2025-Jan, International journal of medical informatics IF:3.7Q2
研究论文 本研究提出了一种基于深度学习的双阶段框架,用于客观评估超声图像质量,使用ATS-539体模数据 引入双阶段深度学习框架,结合逻辑回归模型,实现超声图像质量的定量和客观评估 依赖于体模数据,可能无法完全反映真实临床环境中的图像质量 开发一种客观评估超声图像质量的方法,以提高诊断准确性 超声图像质量 计算机视觉 NA 深度学习 分类模型、逻辑回归模型 图像 ATS-539体模数据
7477 2025-03-10
An interpretable generative multimodal neuroimaging-genomics framework for decoding alzheimer's disease
2024-Nov-14, ArXiv
PMID:38947922
研究论文 本文提出了一种可解释的生成多模态神经影像-基因组学框架,用于解码阿尔茨海默病 提出了一种新的深度学习分类框架,采用循环生成对抗网络(cGAN)在潜在空间中填补缺失数据,并采用可解释的人工智能方法(XAI)提取输入特征的相关性 未明确提及具体限制 解码阿尔茨海默病的潜在机制,进行AD检测和MCI转化预测 阿尔茨海默病患者和轻度认知障碍(MCI)患者 数字病理学 老年病 结构性和功能性磁共振成像(sMRI/fMRI),单核苷酸多态性(SNPs) 循环生成对抗网络(cGAN) 神经影像数据,基因组数据 未明确提及具体样本数量
7478 2025-03-10
Data-driven fine-grained region discovery in the mouse brain with transformers
2024-Jun-13, bioRxiv : the preprint server for biology
研究论文 本文开发了一种无监督训练方案和基于transformer的深度学习架构,用于利用空间转录组学数据检测小鼠全脑的空间区域 提出了一种新的transformer深度学习架构,能够从粗到细粒度地识别小鼠大脑中的空间区域,并发现了一些以前未分类的亚区域 NA 研究小鼠大脑的空间组织 小鼠大脑 数字病理学 NA 空间转录组学 transformer 空间转录组学数据 多个小鼠的全脑数据
7479 2025-03-10
Explainability of three-dimensional convolutional neural networks for functional magnetic resonance imaging of Alzheimer's disease classification based on gradient-weighted class activation mapping
2024, PloS one IF:2.9Q1
研究论文 本文通过应用梯度加权类激活映射(Grad-CAM)等方法,提高了基于fMRI的3D-VGG16网络在阿尔茨海默病(AD)诊断中的可解释性 本文的创新点在于使用多种静息态功能活动图(如ALFF、fALFF、ReHo和VMHC)来降低fMRI数据的复杂性,并采用3D-VGG16网络进行AD分类,同时通过GAP层缓解过拟合问题 本文的局限性在于手动特征提取方法可能增加模型负担,且仅针对AD和正常对照组进行了研究,未涉及其他神经系统疾病 研究目的是探索模型在预测时主要关注的大脑感兴趣区域(ROI),以及AD患者和正常对照组之间这些ROI的差异 研究对象为阿尔茨海默病患者和正常对照组 数字病理学 阿尔茨海默病 fMRI 3D-VGG16 图像 未提及具体样本数量
7480 2025-03-10
Fibration symmetry uncovers minimal regulatory networks for logical computation in bacteria
2023-Oct-17, ArXiv
PMID:37904746
研究论文 本文通过对称纤维化方法简化了细菌的基因调控网络,保留了信息流并突出了网络的计算能力 使用对称纤维化方法简化复杂的生物系统,揭示细菌基因调控网络的计算核心 NA 研究细菌基因调控网络的计算能力和信息传递机制 细菌的基因调控网络 生物信息学 NA 对称纤维化方法 NA 基因调控网络数据 NA
回到顶部