深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 29150 篇文献,本页显示第 7501 - 7520 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
7501 2025-05-12
Improving accuracy for inferior alveolar nerve segmentation with multi-label of anatomical adjacent structures using active learning in cone-beam computed tomography
2025-Mar-03, Scientific reports IF:3.8Q1
research paper 本研究利用主动学习和多标签策略,结合3D nnU-net模型,提高了锥形束计算机断层扫描(CBCT)中牙科解剖结构的分割精度 采用主动学习和多标签策略,结合3D nnU-net模型,显著提高了牙科解剖结构的分割精度,特别是在下牙槽神经(IAN)的分割上 研究仅使用了60个CBCT扫描样本进行内部验证,样本量相对较小 提高牙科解剖结构在CBCT扫描中的自动分割精度,以辅助种植牙规划 上颌窦、上颌骨、下颌骨和下牙槽神经(IAN) digital pathology NA cone-beam computed tomography (CBCT) 3D nnU-net 3D medical image 60个CBCT扫描样本来自Kooalldam Dental Hospital,并使用首尔国立大学牙科医院的数据进行外部验证
7502 2025-05-12
Development and validation of a deep learning algorithm for prediction of pediatric recurrent intussusception in ultrasound images and radiographs
2025-Mar-03, BMC medical imaging IF:2.9Q2
research paper 开发并验证了一种基于腹部超声图像和腹部X光片的深度学习算法,用于预测小儿复发性肠套叠 使用多模态医学影像(超声和X光片)结合深度学习模型预测复发性肠套叠,并比较了不同模型和融合方法的性能 研究为回顾性设计,可能存在选择偏差,且未在外部数据集上验证模型的泛化能力 开发预测小儿复发性肠套叠的深度学习模型 3665例肠套叠患者的腹部超声图像和腹部X光片 digital pathology pediatric disease 深度学习 VGG11, ResNet18, LightGBM image 3665例肠套叠病例
7503 2025-05-12
Multimodal histopathologic models stratify hormone receptor-positive early breast cancer
2025-Mar-02, Nature communications IF:14.7Q1
研究论文 开发了一种名为Orpheus的多模态深度学习工具,用于从H&E全切片图像中推断激素受体阳性早期乳腺癌的Oncotype DX®复发评分 Orpheus模型能够准确识别高风险病例(RS>25)并比现有临床病理学模型更准确地预测转移复发风险 研究仅基于三个机构的6172例病例,可能需要更大规模的外部验证 开发一种成本效益高且快速的替代方案来评估激素受体阳性早期乳腺癌的复发风险 激素受体阳性早期乳腺癌患者 数字病理学 乳腺癌 深度学习 多模态深度学习模型 H&E全切片图像 6172例来自三个机构的病例
7504 2025-05-12
Quantifying Facial Gestures Using Deep Learning in a New World Monkey
2025-Mar, American journal of primatology IF:2.0Q1
研究论文 该研究利用深度学习技术量化新世界猴(棉顶狨猴)的面部表情,以探索其在多模式交流中的独特性 首次将无标记姿态估计算法应用于棉顶狨猴面部表情的自动识别,并成功区分不同行为背景下的面部配置 研究仅针对圈养个体,可能无法完全反映野外环境下的自然行为 开发自动化工具从原始视频数据中提取行为线索,推进灵长类多模式交流研究 棉顶狨猴(新世界猴)的面部表情 计算机视觉 NA 无标记姿态估计 深度学习 视频 圈养棉顶狨猴的视频片段(具体数量未明确说明)
7505 2025-05-12
Toward a rapid, sensitive, user-friendly, field-deployable artificial intelligence tool for enhancing African swine fever diagnosis and reporting
2025-Mar-01, American journal of veterinary research IF:1.3Q2
研究论文 开发一种基于深度学习和智能手机的人工智能诊断工具,用于提高非洲猪瘟(ASF)侧流层析试纸条(LFA)读取的准确性 结合深度学习模型(YOLO)和智能手机技术,开发了一种用户友好、可现场部署的AI工具,用于提高LFA测试的准确性和早期诊断能力 模型在召回率(79%)方面仍有提升空间,且数据集可能受限于手动标注的LFA图像 提高非洲猪瘟(ASF)的诊断速度和准确性,特别是在实验室资源有限的地区 非洲猪瘟(ASF)的侧流层析试纸条(LFA)测试图像 计算机视觉 非洲猪瘟 深度学习辅助的智能手机图像分类 YOLO 图像 未明确提及具体样本数量,但使用了3种不同的训练/开发/测试数据集划分
7506 2025-05-12
Evaluation by dental professionals of an artificial intelligence-based application to measure alveolar bone loss
2025-Mar-01, BMC oral health IF:2.6Q1
research paper 评估牙科专业人员对基于人工智能的牙槽骨流失测量应用的接受度和使用效果 开发并实施了一种结合语义分割神经网络和对象检测网络的深度学习模型,用于精确测量牙槽嵴高度变化,并调查了牙科专业人员对该AI应用的接受度 样本量相对较小(56名牙科专业人员),且参与者中学术背景的比例较高(52%) 评估AI在牙科诊断中的接受度和实用性,以及其在常规实践中的潜在应用 牙科专业人员和牙槽骨流失测量 digital pathology 牙周病 深度学习 语义分割神经网络和对象检测网络 X光影像 550张咬翼X光片数据集,56名牙科专业人员参与评估
7507 2025-05-12
Data-driven AI platform for dens evaginatus detection on orthodontic intraoral photographs
2025-Mar-01, BMC oral health IF:2.6Q1
研究论文 开发并评估了一种用于自动检测正畸口内照片中牙外突前磨牙的深度学习模型(BiStageNet),并基于训练结果构建了一个牙外突检测平台 提出了BiStageNet模型,并开发了一个用于正畸临床应用的牙外突检测平台 未提及具体局限性 开发一个自动检测牙外突前磨牙的深度学习模型及其临床应用平台 正畸口内照片中的前磨牙 计算机视觉 牙科疾病 深度学习 BiStageNet 图像 1,400张高质量口内照片用于前磨牙识别训练,2,128张图像用于牙外突检测训练
7508 2025-05-12
Prediction of Lymph Node Metastasis in Colorectal Cancer Using Intraoperative Fluorescence Multi-Modal Imaging
2025-Mar, IEEE transactions on medical imaging IF:8.9Q1
research paper 该研究开发了一种结合术中荧光多模态成像和深度学习的模型,用于预测结直肠癌淋巴结转移 提出了多模态荧光成像特征融合预测模型(MFI-FFP),结合白光、荧光和伪彩色成像,设计了多模态特征融合模块和新颖的损失函数 未提及具体样本量或外部验证结果 提高结直肠癌淋巴结转移的诊断效率 结直肠癌患者的淋巴结 digital pathology colorectal cancer intraoperative fluorescence multi-modal imaging MFI-FFP (deep learning based multi-modal fusion model) multi-modal medical images (white light/fluorescence/pseudo-color) NA
7509 2025-05-12
EViT: An Eagle Vision Transformer With Bi-Fovea Self-Attention
2025-Mar, IEEE transactions on cybernetics IF:9.4Q1
research paper 提出了一种结合鹰眼视觉特性的视觉变换器EViT,通过双凹视觉交互结构和双凹自注意力机制,提高了计算效率和特征表示能力 结合鹰眼的生理和视觉特性,设计了双凹视觉交互结构和双凹自注意力机制,模仿生物视觉皮层的层次和平行信息处理方式 未提及具体在哪些任务或数据集上表现不佳,或是否存在特定场景下的局限性 解决视觉变换器计算复杂度高和缺乏理想归纳偏置的问题,提升计算机视觉任务的性能 视觉变换器及其在计算机视觉任务中的应用 computer vision NA 双凹自注意力机制(BFSA)和双凹前馈网络(BFFN) EViT (Eagle Vision Transformer) image NA
7510 2025-05-12
Prediction of quality traits in packaged mango by NIR spectroscopy
2025-Mar, Food research international (Ottawa, Ont.)
研究论文 本研究通过近红外光谱技术预测包装芒果的质量特性,并开发了减少纸袋干扰的创新方法 结合深度学习全连接神经网络(FNN)和高斯空间(GS)滤波,有效减少包装对芒果近红外光谱的干扰 NA 准确评估包装芒果的硬度(FI)、干物质含量(DMC)、可溶性固形物含量(SSC)和可滴定酸度(TA) 包装芒果 光谱分析 NA 近红外光谱(NIR) 全连接神经网络(FNN)、偏最小二乘回归(PLSR)、主成分回归(PCR) 光谱数据 NA
7511 2025-05-12
Two-Stage Deep Learning Model for Adrenal Nodule Detection on CT Images: A Retrospective Study
2025-Mar, Radiology IF:12.1Q1
研究论文 开发并测试了一种两阶段深度学习模型,用于在腹部CT图像上自动检测肾上腺结节 提出了一种两阶段架构的深度学习模型,分别针对左右肾上腺进行训练,结合人类解读模拟分诊性能 研究为回顾性研究,可能受限于数据收集的时间范围和样本选择 开发自动检测肾上腺结节的深度学习模型,并评估其与人类解读结合的分诊性能 肾上腺结节 数字病理 肾上腺疾病 深度学习 两阶段检测和分割模型 CT图像 内部数据集995名患者,外部测试集12080名患者,内部测试集2有1214名患者
7512 2025-05-12
Deep-Learning-Based Approaches for Rational Design of Stapled Peptides With High Antimicrobial Activity and Stability
2025-Mar, Microbial biotechnology IF:4.8Q1
research paper 本研究利用深度学习和机器学习构建了十种预测模型,用于设计具有高抗菌活性和稳定性的钉合肽,并通过实验验证了其效果 首次将深度学习方法应用于钉合肽的设计,提高了预测准确性和设计效率,并通过实验验证了设计的钉合肽具有高抗菌活性和稳定性 研究仅针对钉合肽的设计和验证,未涉及其他类型的抗菌肽 探索深度学习方法在抗菌肽设计和优化中的应用 钉合抗菌肽(AMPs) machine learning NA deep learning, machine learning, AlphaFold support vector machine, deep learning models structural, sequence and amino acid descriptors 独立数据集和湿实验室实验
7513 2025-05-12
Pyramid Network With Quality-Aware Contrastive Loss for Retinal Image Quality Assessment
2025-Mar, IEEE transactions on medical imaging IF:8.9Q1
research paper 提出了一种名为QAC-Net的统一视网膜图像质量评估框架,能够定性和定量评估视网膜图像质量 采用金字塔网络结构和质量感知对比损失(QAC)来提取区分性特征,同时构建了一个包含2300张真实失真视网膜图像的数据集用于定量评估 定量评估任务的数据集仍然不足 设计有效的视网膜图像质量评估(RIQA)方法以减少低质量图像导致的误诊风险 视网膜图像 computer vision NA deep learning CNN image 2300张真实失真视网膜图像
7514 2025-05-12
Deep Learning for High Speed Optical Coherence Elastography With a Fiber Scanning Endoscope
2025-Mar, IEEE transactions on medical imaging IF:8.9Q1
research paper 该研究提出了一种基于深度学习的高速光学相干弹性成像方法,使用光纤扫描内窥镜进行实时弹性估计 开发了一种微型光纤扫描内窥镜,结合深度学习信号处理流程,实现了复杂波场的实时弹性估计 研究仅在体外猪组织上验证了可行性,未进行临床人体试验 开发一种适用于微创手术的实时组织弹性成像技术 组织弹性 digital pathology NA 光学相干弹性成像 spatio-temporal deep learning network image sequences phantom measurements and ex-vivo porcine tissue
7515 2025-05-12
GBCHV an advanced deep learning anatomy aware model for accurate classification of gallbladder cancer utilizing ultrasound images
2025-Feb-28, Scientific reports IF:3.8Q1
研究论文 本研究介绍了一种新颖的深度学习方法,旨在利用超声图像准确分类胆囊癌(GBC)为良性、恶性和正常类别 该模型的创新点在于其解剖感知机制,通过水平-垂直条带变换更准确地描绘胆囊的空间关系和复杂解剖特征 NA 提高胆囊癌的早期精确分类 胆囊癌的超声图像 数字病理学 胆囊癌 超声成像 GBCHV-Trans(基于Transformer的模型) 图像 GBC USG(GBCU)数据集中的超声图像
7516 2025-05-12
CatPred: a comprehensive framework for deep learning in vitro enzyme kinetic parameters
2025-Feb-28, Nature communications IF:14.7Q1
研究论文 提出了一种名为CatPred的深度学习框架,用于预测体外酶动力学参数 CatPred解决了标准化数据集缺乏、训练期间未见酶序列的性能评估以及模型不确定性量化等关键挑战 NA 开发一个深度学习框架来预测体外酶动力学参数 酶动力学参数(包括转换数k、米氏常数K和抑制常数K) 机器学习 NA 深度学习 预训练蛋白质语言模型 酶序列数据 约23k、41k和12k个数据点(分别对应k、K和K)
7517 2025-05-12
Semantic structure preservation for accurate multi-modal glioma diagnosis
2025-Feb-28, Scientific reports IF:3.8Q1
research paper 提出了一种名为RFPMSS的新型语义结构保持一致性方法,用于多模态胶质瘤诊断 通过多锚点分配和自由文本报告提取监督信号,实现了多模态语义结构的保留和全局对齐 需要依赖患者检查报告作为监督信号,可能受报告质量和完整性的影响 提高多模态医学图像分析的准确性 胶质瘤患者的多模态医学图像和检查报告 digital pathology glioma deep learning RFPMSS multimodal medical images and text reports datasets from Shanxi Provincial Cancer Hospital and Shanxi Provincial People's Hospital
7518 2025-05-12
OVision A raspberry Pi powered portable low cost medical device framework for cancer diagnosis
2025-Feb-28, Scientific reports IF:3.8Q1
研究论文 介绍了一种名为OVision的低成本、深度学习驱动的便携式医疗设备框架,用于辅助癌症的病理诊断 利用Raspberry Pi开发了一种便携式、低成本的独立设备,无需互联网连接和高端基础设施,显著降低了成本同时保持了诊断准确性 目前仅针对卵巢癌亚型进行了验证,尚未扩展到其他癌症类型 解决资源受限地区癌症诊断技术获取不平等的问题,开发低成本、高精度的便携式诊断设备 卵巢癌亚型的病理诊断 数字病理 卵巢癌 深度学习 NA 病理图像 NA
7519 2025-05-12
Integrating convolutional layers and biformer network with forward-forward and backpropagation training
2025-Feb-28, Scientific reports IF:3.8Q1
研究论文 提出了一种名为Deep-CBN的新框架,用于提高分子属性预测的准确性和效率 结合了卷积神经网络和BiFormer注意力机制,并采用前向-前向算法和反向传播进行训练 未提及具体的数据集规模限制或模型计算复杂度 提高分子属性预测的准确性以加速药物发现过程 分子属性预测 机器学习 NA 卷积神经网络和BiFormer注意力机制 CNN和BiFormer SMILES字符串 多个基准数据集(Tox21、BBBP、SIDER、ClinTox、BACE、HIV、MUV)
7520 2025-05-12
Software defect prediction based on residual/shuffle network optimized by upgraded fish migration optimization algorithm
2025-Feb-28, Scientific reports IF:3.8Q1
研究论文 提出了一种基于残差/洗牌网络和升级版鱼群迁移优化算法的软件缺陷预测新方法 结合深度学习和元启发式算法训练软件代码,提取语义和结构特征 分析仅限于开源项目,需进一步评估在专有软件上的表现 提高软件缺陷预测的准确性,减少人工工作量 开源软件项目 机器学习 NA 元启发式优化算法 Residual/Shuffle Networks 软件代码 多个开源项目
回到顶部