本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 7541 | 2025-10-06 |
Deep learning-based multimodal fusion for quality prediction of chili paste using hyperspectral imaging and near-infrared spectroscopy
2025-Nov-30, Food chemistry
IF:8.5Q1
DOI:10.1016/j.foodchem.2025.145712
PMID:40743732
|
研究论文 | 开发基于深度学习的多模态融合系统,通过融合高光谱成像和近红外光谱技术无损预测辣椒酱品质 | 首次建立辣椒酱发酵的无损快速检测框架,采用CNN-LSTM混合模型实现多模态特征融合 | 样本量较小(原始仅160个样本),需通过数据增强扩充 | 开发智能多模态系统用于辣椒酱品质的无损评估 | 辣椒酱的品质参数(颜色值、辣椒素、二氢辣椒素和挥发性物质) | 计算机视觉 | NA | 高光谱成像(HSI)、近红外光谱 | CNN, LSTM | 高光谱图像、光谱数据、理化指标 | 160个原始样本,通过Mixup增强扩展到800个样本 | NA | CNN-LSTM混合模型 | 决定系数R | NA |
| 7542 | 2025-10-06 |
Verification of resolution and imaging time for high-resolution deep learning reconstruction techniques
2025-Nov, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2025.110463
PMID:40706823
|
研究论文 | 评估供应商提供的超分辨率深度学习重建方法在磁共振成像中的性能表现 | 首次系统评估了商用超分辨率DLR方法(PIQE)在不同参数配置下的性能边界,明确了最佳使用条件 | 研究样本量较小(仅8例患者),且仅针对特定厂商的MRI扫描仪和算法 | 验证超分辨率深度学习重建技术在MRI中的分辨率和成像时间优化效果 | 边缘模体和8例患者的临床脑部图像 | 医学影像分析 | 神经系统疾病 | 磁共振成像, 深度学习重建 | 深度学习 | 医学图像 | 8例患者脑部图像 | 供应商专有算法(Precise IQ Engine) | 超分辨率重建网络 | SSIM, PSNR, RMSE, FWHM, 五分制Likert量表 | 佳能3T MRI扫描仪 |
| 7543 | 2025-10-06 |
Applications of artificial intelligence in liver cancer: A scoping review
2025-Nov, Artificial intelligence in medicine
IF:6.1Q1
DOI:10.1016/j.artmed.2025.103244
PMID:40818357
|
综述 | 本文系统回顾了人工智能在原发性肝癌管理中的应用进展 | 全面梳理了AI在肝癌筛查、诊断、治疗规划和预后预测等全流程中的应用现状 | 多数模型缺乏充分的临床适用性评估和外部验证,开发与临床应用存在差距 | 探索人工智能在肝癌管理中的应用潜力 | 原发性肝癌(肝细胞癌和肝内胆管癌) | 机器学习 | 肝癌 | 机器学习,深度学习 | 深度学习模型 | 医学影像数据(CT,MRI) | 从13,122篇文献中筛选出62篇进行详细分析 | NA | NA | 敏感性,特异性 | NA |
| 7544 | 2025-10-06 |
Deep learning-augmented inductively coupled plasma atomic emission spectrometry for multivariate authentication of green tea origin and grades
2025-Nov, Food research international (Ottawa, Ont.)
DOI:10.1016/j.foodres.2025.117015
PMID:40922162
|
研究论文 | 开发了一种结合多种金属元素分析和反向传播神经网络的方法,用于同时鉴定绿茶的产地和等级 | 首次将ICP-AES与BPNN结合用于同时鉴定茶叶产地和等级,并采用SHAP进行模型解释和优化 | 仅针对龙井茶等特定绿茶品种进行研究,样本多样性可能有限 | 建立简单可靠的绿茶产地和等级同时鉴定方法 | 绿茶样本(如龙井茶) | 机器学习 | NA | 电感耦合等离子体原子发射光谱法(ICP-AES) | BPNN(反向传播神经网络) | 光谱数据,元素含量数据 | NA | NA | BPNN | 准确率 | NA |
| 7545 | 2025-10-06 |
Evaluation of a deep learning segmentation tool to help detect spinal cord lesions from combined T2 and STIR acquisitions in people with multiple sclerosis
2025-Oct, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11541-0
PMID:40185925
|
研究论文 | 开发用于检测多发性硬化患者脊髓病变的深度学习分割工具,并评估其对临床医生诊断性能的提升 | 首次开发基于矢状位T2和STIR序列组合的深度学习模型用于脊髓多发性硬化病变检测,并在多中心数据上验证其临床价值 | 样本量相对有限(50例患者),仅基于法国多发性硬化登记处的回顾性数据,缺乏外部验证 | 开发深度学习模型辅助临床医生检测多发性硬化患者的脊髓病变 | 多发性硬化患者的脊髓MRI图像 | 医学影像分析 | 多发性硬化 | MRI(T2和STIR序列) | 深度学习分割模型 | 医学影像 | 50例患者(39名女性,中位年龄41岁),来自40台不同扫描仪的回顾性数据 | NA | NA | 灵敏度, 精确度, Light's kappa | NA |
| 7546 | 2025-10-06 |
Real-life benefit of artificial intelligence-based fracture detection in a pediatric emergency department
2025-Oct, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11554-9
PMID:40192806
|
研究论文 | 评估基于人工智能的骨折检测软件在儿科急诊真实临床环境中的性能表现 | 在真实儿科急诊环境中评估AI骨折检测软件性能,并分析其对经验不足医师诊断准确性的影响 | 仅评估单一商业AI软件,样本量有限,未进行多中心验证 | 评估AI骨折检测软件在儿科急诊中的临床应用价值 | 18岁以下儿童的1672张X光片 | 医学影像分析 | 骨折 | X光成像 | 深度学习 | X光图像 | 1672张儿童X光片(中位年龄10.9岁,59%男性) | NA | NA | 灵敏度, 特异性, 准确率 | NA |
| 7547 | 2025-10-06 |
Evaluation of high-resolution pituitary dynamic contrast-enhanced MRI using deep learning-based compressed sensing and super-resolution reconstruction
2025-Oct, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11574-5
PMID:40221940
|
研究论文 | 评估基于深度学习的压缩感知和超分辨率重建技术在高分辨率垂体动态对比增强MRI中诊断微腺瘤的性能 | 首次将深度学习压缩感知与超分辨率重建技术结合应用于垂体DCE MRI,实现高分辨率成像同时提升诊断性能 | 样本量有限(126例),且为单中心前瞻性研究 | 评估DLCS-SR重建技术在垂体微腺瘤诊断中的性能 | 疑似垂体微腺瘤患者 | 医学影像分析 | 垂体疾病 | 动态对比增强MRI | 深度学习 | 医学影像 | 126名疑似垂体微腺瘤患者 | NA | NA | AUC, κ统计量 | NA |
| 7548 | 2025-10-06 |
Deep learning and conventional hip MRI for the detection of labral and cartilage abnormalities using arthroscopy as standard of reference
2025-Oct, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11546-9
PMID:40240555
|
研究论文 | 比较基于深度学习的高分辨率髋关节MRI与传统压缩感知MRI在检测髋臼唇和软骨异常方面的性能 | 首次将高分辨率深度学习MRI(CSAI)与标准分辨率压缩感知MRI在髋关节病变检测中进行系统比较 | 样本量较小(32例患者),对某些区域软骨病变的敏感性仍然较低 | 评估深度学习MRI在髋关节病变诊断中的性能 | 股骨髋臼撞击综合征患者 | 医学影像分析 | 骨科疾病 | MRI, 深度学习, 压缩感知 | 深度学习模型 | 医学影像 | 32例患者(平均年龄37.5岁, 24名男性) | NA | NA | 敏感性, 特异性, 准确性 | 3-T MRI设备 |
| 7549 | 2025-10-06 |
Deep learning reconstruction for detection of liver lesions at standard-dose and reduced-dose abdominal CT
2025-Oct, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11596-z
PMID:40251443
|
研究论文 | 本研究比较了深度学习重建与迭代重建在标准剂量和降低剂量腹部CT中检测肝脏病灶的诊断性能 | 首次系统评估深度学习重建在降低CT辐射剂量方面的潜力,并与传统迭代重建方法进行对比 | 样本量相对有限(44名参与者),仅针对胃肠道和胰腺腺癌肝转移患者,未涵盖其他类型肝脏病变 | 评估深度学习重建在降低CT辐射剂量同时保持肝脏病灶检测准确性的能力 | 已知胃肠道和胰腺腺癌肝转移的患者 | 医学影像分析 | 肝脏转移癌 | CT扫描,深度学习重建,迭代重建 | 深度学习 | CT影像 | 44名参与者,348个肝脏病灶(297个转移灶,51个良性病灶) | NA | NA | 病灶检测率,置信区间,McNemar检验,混合效应逻辑回归 | NA |
| 7550 | 2025-10-06 |
Deep learning enhances reliability of dynamic contrast-enhanced MRI in diffuse gliomas: bypassing post-processing and providing uncertainty maps
2025-Oct, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11588-z
PMID:40252095
|
研究论文 | 提出一种新颖的深度学习模型,直接从DCE-MRI估计药代动力学参数图和不确定性评估 | 使用时序概率深度学习模型绕过动脉输入函数估计,直接生成PK参数图和不确定性图 | 单中心回顾性研究,样本量有限 | 提高弥漫性胶质瘤DCE-MRI的可靠性 | 成人型弥漫性胶质瘤患者 | 医学影像分析 | 胶质瘤 | DCE-MRI | 深度学习 | 医学影像 | 329名患者(平均年龄55±15岁,197名男性) | NA | 时序概率模型 | SSIM, ICC, AUROC | NA |
| 7551 | 2025-10-06 |
Artificial intelligence for medication-related osteonecrosis of the jaw: a scoping review
2025-Oct, Oral surgery, oral medicine, oral pathology and oral radiology
DOI:10.1016/j.oooo.2025.03.004
PMID:40393880
|
综述 | 本文系统回顾了人工智能在药物相关性颌骨坏死预测、诊断和管理中的应用研究现状 | 首次对AI在MRONJ领域应用进行全面范围综述,涵盖预测、诊断和患者教育三个主要方向 | 纳入研究数量有限(8篇),数据质量、验证方法和临床整合方面存在挑战 | 评估人工智能在药物相关性颌骨坏死领域的应用现状和发展前景 | 药物相关性颌骨坏死(MRONJ)患者 | 医学人工智能 | 颌骨坏死 | 机器学习、深度学习、大语言模型 | 支持向量机, 随机森林, 梯度提升机, 深度学习模型, 大语言模型 | 临床数据, 影像学图像, 文本数据 | 8项符合纳入标准的研究 | NA | NA | AUC, 准确率, 精确率, 召回率, 响应质量 | NA |
| 7552 | 2025-10-06 |
A New Approach for Calculating Texture Coefficients of Different Rocks With Image Segmentation and Image Processing Techniques
2025-Oct, Microscopy research and technique
IF:2.0Q3
DOI:10.1002/jemt.24879
PMID:40418716
|
研究论文 | 提出一种结合图像分割和图像处理技术计算岩石纹理系数的新方法 | 开发了基于深度学习的图像分割技术和Python算法,实现快速准确的岩石纹理系数计算 | 仅使用20种岩石样本进行验证,样本规模有限 | 改进岩石纹理系数的计算方法,提高计算效率和准确性 | 20种不同类型的火成岩、变质岩和沉积岩 | 计算机视觉 | NA | 薄片图像分析 | 深度学习 | 图像 | 20种岩石的薄片图像 | Python | NA | IoU | NA |
| 7553 | 2025-10-06 |
Navigating the landscape of multimodal AI in medicine: A scoping review on technical challenges and clinical applications
2025-Oct, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2025.103621
PMID:40482561
|
综述 | 本文通过范围综述方法系统分析了医学领域基于深度学习的多模态AI应用现状、技术挑战和临床实施策略 | 首次对2018-2024年间432篇多模态AI医学应用论文进行系统性分析,揭示了多模态模型相比单模态平均AUC提升6.2个百分点的优势 | 存在跨部门协调困难、数据特征异质性和数据集不完整等挑战 | 探索多模态AI在医学领域的技术挑战和临床应用前景 | 432篇2018-2024年发表的医学多模态AI研究论文 | 机器学习 | NA | 深度学习 | 深度学习模型 | 多模态医疗数据 | 432篇研究论文 | NA | 多模态融合架构 | AUC | NA |
| 7554 | 2025-10-06 |
A multi-component heavy metal detection method using UV-Vis superimposed spectrum and deep learning
2025-Sep-15, Journal of hazardous materials
IF:12.2Q1
DOI:10.1016/j.jhazmat.2025.139187
PMID:40664080
|
研究论文 | 提出一种结合紫外可见叠加光谱与深度学习的多组分重金属检测方法 | 首次将Transformer模型应用于紫外可见叠加光谱分析,通过组合化学探针增强显色反应特异性,实现端到端的多重金属定性与定量分析 | 真实环境样本检测的R²值(0.681)低于方法开发阶段(0.936),表明在复杂实际环境中性能有所下降 | 解决环境监测中光谱重叠问题,实现多组分重金属快速检测 | 五种代表性重金属(Sb、Fe、Ni、Cd、Cu)及实际环境样本中的十种重金属 | 机器学习 | NA | 紫外可见光谱法,组合化学探针,高通量实验 | Transformer | 光谱数据 | 五种代表性重金属训练,十种重金属实际样本测试 | NA | Transformer | R², RMSE, MAE | NA |
| 7555 | 2025-10-06 |
Recognition of microplastic aging features based on multimodal data fusion and attention mechanisms
2025-Sep-15, Journal of hazardous materials
IF:12.2Q1
DOI:10.1016/j.jhazmat.2025.139301
PMID:40684512
|
研究论文 | 基于多模态数据融合和注意力机制识别微塑料老化特征 | 首次将SEM图像和FT-IR数据通过多模态融合与注意力机制结合,能够识别不同老化类型的关键特征关联 | NA | 开发能够准确识别微塑料老化特征的方法,理解微塑料老化机制 | 微塑料老化样品 | 计算机视觉,自然语言处理 | NA | SEM成像,FT-IR光谱分析 | 深度学习模型 | 图像,光谱数据 | 1371个样品,涵盖7种老化类型 | NA | 注意力机制 | 准确率,F1分数 | NA |
| 7556 | 2025-10-06 |
Racial and ethnic disparities in exposure to short-term NO2 air pollution in California during 1980-2022
2025-Sep-15, Journal of hazardous materials
IF:12.2Q1
DOI:10.1016/j.jhazmat.2025.139309
PMID:40695125
|
研究论文 | 本研究利用深度学习框架估计了1980-2022年加利福尼亚州高分辨率二氧化氮浓度,并量化了不同种族和民族群体在短期NO₂暴露中的差异 | 首次系统研究历史时期种族和民族在短期NO₂暴露中的差异,开发了覆盖42年时间跨度的高分辨率浓度估算模型 | 依赖化学传输模型输出作为先验地理物理信息,缺乏卫星观测数据 | 量化加利福尼亚州不同种族和民族群体在短期NO₂空气污染暴露中的历史差异 | 加利福尼亚州不同种族和民族群体(西班牙裔或拉丁裔、非西班牙裔白人、非西班牙裔非洲裔美国人或黑人、非西班牙裔美国印第安人、阿拉斯加原住民、亚裔和太平洋岛民) | 环境科学, 公共卫生 | NA | 深度学习, 地理空间数据分析 | 深度学习模型 | 地理空间数据, 空气质量数据 | 1980-2022年加利福尼亚州每日约1km×1km网格数据 | NA | NA | 决定系数(0.72-0.83), 基于网格的10折交叉验证 | NA |
| 7557 | 2025-10-06 |
Real-time oil spill concentration assessment through fluorescence imaging and deep learning
2025-Sep-15, Journal of hazardous materials
IF:12.2Q1
DOI:10.1016/j.jhazmat.2025.139374
PMID:40818234
|
研究论文 | 本研究通过结合荧光成像、深度学习、移动应用和数据管理系统,开发了一种自动化实时溢油评估方法 | 首次将荧光成像与深度学习相结合用于实时溢油浓度评估,并开发了配套的移动应用和数据管理系统 | 仅测试了两种原油类型(萘基原油和芳香-萘基原油),浓度范围限定在0-500 mg/L | 开发快速准确的实时溢油评估技术以支持环境评估和应急响应 | 两种原油类型:萘基原油和芳香-萘基原油 | 计算机视觉 | NA | 荧光成像 | CNN | 图像 | 1530张荧光图像,包含两种原油类型在不同浓度下的数据 | NA | 卷积神经网络结合自定义回归模型 | R²分数, RMSE | NA |
| 7558 | 2025-10-06 |
Early Detection of Lung Metastases in Breast Cancer Using YOLOv10 and Transfer Learning: A Diagnostic Accuracy Study
2025-Sep-09, Medical science monitor : international medical journal of experimental and clinical research
IF:2.2Q3
DOI:10.12659/MSM.948195
PMID:40922404
|
研究论文 | 本研究使用YOLOv10和迁移学习技术开发了一种基于CT影像的乳腺癌肺转移早期检测系统 | 首次将YOLOv10模型与迁移学习相结合应用于乳腺癌肺转移的CT影像检测,相比现有方法具有更高的诊断准确性 | 样本量较小(仅16名患者),数据来源于单一医疗机构,需要更大规模的多中心研究验证 | 开发并验证基于深度学习的乳腺癌肺转移自动检测系统 | 乳腺癌确诊患者的肺部CT影像 | 计算机视觉 | 乳腺癌 | CT影像分析 | YOLOv10, CNN | 医学影像 | 16名患者的1264张增强CT图像 | NA | ResNet-50, GoogLeNet | 准确率, 灵敏度, 特异性, 精确率, AUC | NA |
| 7559 | 2025-10-06 |
Calibration Transfer of Deep Learning Models among Multiple Raman Spectrometers via Low-Rank Adaptation
2025-Sep-09, Analytical chemistry
IF:6.7Q1
DOI:10.1021/acs.analchem.5c01846
PMID:40922652
|
研究论文 | 提出基于低秩自适应的校准转移方法LoRA-CT,实现深度学习模型在多个拉曼光谱仪之间的高效迁移 | 通过将权重更新分解为低秩矩阵,实现参数高效的模型微调,比全参数微调减少600倍可训练参数 | NA | 解决深度学习模型在不同拉曼光谱仪之间的可移植性问题 | 溶剂混合物和混合油样品 | 机器学习 | NA | 拉曼光谱 | 深度学习 | 光谱数据 | 三个数据集(溶剂混合物和混合油),使用极少量转移样本 | NA | NA | 决定系数R², 均方根误差RMSE | NA |
| 7560 | 2025-10-06 |
Comparison of DLIR and ASIR-V algorithms for virtual monoenergetic imaging in carotid CTA under a triple-low protocol
2025-Sep-09, Japanese journal of radiology
IF:2.9Q2
DOI:10.1007/s11604-025-01866-7
PMID:40924047
|
研究论文 | 比较DLIR和ASIR-V算法在三低扫描协议下颈动脉CTA虚拟单能成像的图像质量 | 首次在颈动脉CTA三低扫描协议下系统比较DLIR和ASIR-V算法在50 keV虚拟单能成像中的表现 | 样本量相对有限(120例患者),未评估其他能量水平的虚拟单能成像 | 评估不同重建算法在低剂量颈动脉CTA中的图像质量 | 颈动脉疾病患者 | 医学影像 | 脑血管疾病 | 双能CT血管成像(DE-CTA),虚拟单能成像(VMI) | 深度学习图像重建(DLIR),自适应统计迭代重建(ASIR-V) | 医学影像数据 | 120例接受DE-CTA检查的患者 | NA | NA | 信噪比(SNR),对比噪声比(CNR),标准差(SD),5点李克特量表 | NA |