本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7561 | 2025-03-06 |
Evaluating fusion models for predicting occult lymph node metastasis in tongue squamous cell carcinoma
2025-Mar-05, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11473-9
PMID:40042648
|
研究论文 | 本研究评估并比较了多种预测模型在预测舌鳞状细胞癌患者隐匿性淋巴结转移中的有效性 | 提出了基于决策的晚期融合模型,整合了2D深度学习、常规放射组学、肿瘤内异质性放射组学和临床数据,取得了最佳预测效果 | 研究为回顾性诊断实验,样本量相对有限,且仅来自三个医疗中心 | 评估和比较不同预测模型在预测舌鳞状细胞癌患者隐匿性淋巴结转移中的有效性 | 舌鳞状细胞癌患者 | 数字病理学 | 舌鳞状细胞癌 | 对比增强磁共振成像(CEMRI) | 2D深度学习、常规放射组学、肿瘤内异质性放射组学、晚期融合模型 | 图像、临床数据 | 268名患者,分为训练集(107名)、内部测试集(53名)和两个外部测试集(63名和45名) |
7562 | 2025-03-06 |
Artificial intelligence for the detection of airway nodules in chest CT scans
2025-Mar-05, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11468-6
PMID:40042650
|
研究论文 | 本文开发并评估了一种基于深度学习的AI系统,用于检测和定位胸部CT扫描中的气道结节 | 开发了一种能够检测大多数气道结节的AI系统,包括具有非常细微特征的结节,且具有可接受的假阳性率 | 研究仅在单一学术医院进行,样本量相对较小,且未进行外部验证 | 开发并评估一种AI系统,用于检测胸部CT扫描中的气道结节 | 2004年至2020年间接受胸部或胸腹部CT扫描的患者 | 计算机视觉 | 肺癌 | 深度学习 | NA | 图像 | 160名有气道结节的患者和160名无气道结节的患者 |
7563 | 2025-03-06 |
Deep learning framework for interpretable quality control of echocardiography video
2025-Mar-04, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17722
PMID:40038091
|
研究论文 | 本文介绍了一种用于超声心动图视频自动质量控制的深度学习框架,旨在实时监测关键成像参数,减少手动质量控制过程的变异性 | 提出了一种多任务网络,结合了CNN、Bi-LSTM和面向对象检测头,用于心脏周期完整性、解剖结构、深度、心脏轴角度和增益的分析,并生成易于解释的综合评分 | 研究仅基于1331个超声心动图视频进行训练和测试,样本量相对较小,可能影响模型的泛化能力 | 开发一种自动化系统,用于超声心动图视频的质量控制,以提高临床评估的效率和一致性 | 超声心动图视频 | 计算机视觉 | 心血管疾病 | 深度学习 | CNN, Bi-LSTM | 视频 | 1331个超声心动图视频 |
7564 | 2025-03-06 |
Predicting Cardiac Magnetic Resonance-Derived Ejection Fraction from Echocardiogram Via Deep Learning Approach in Tetralogy of Fallot
2025-Mar-04, Pediatric cardiology
IF:1.5Q2
DOI:10.1007/s00246-025-03802-y
PMID:40038120
|
研究论文 | 本研究通过深度学习技术预测法洛四联症患者的心脏磁共振成像(CMR)衍生的射血分数(LVEF),使用超声心动图视频作为输入 | 利用EchoNet-Dynamic模型,通过迁移学习方法,以CMR衍生的LVEF为基准,预测法洛四联症患者的LVEF,提供了一种比传统方法更准确的评估方法 | 研究仅针对法洛四联症患者,且模型在不同视图(PSAX和A4C)下的预测性能存在差异 | 通过深度学习技术改进法洛四联症患者的心脏功能评估 | 法洛四联症患者的超声心动图视频 | 计算机视觉 | 心血管疾病 | 深度学习 | CNN | 视频 | NA |
7565 | 2025-03-06 |
Landscape of 2D Deep Learning Segmentation Networks Applied to CT Scan from Lung Cancer Patients: A Systematic Review
2025-Mar-04, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01458-x
PMID:40038137
|
系统综述 | 本文综述了2D深度学习网络在肺癌CT分割中的应用现状和前景,总结了研究进展、关键概念和存在的不足 | 强调了卷积神经网络,特别是UNet在肺癌CT分析中的重要性,并提倡结合2D/3D建模方法 | 研究存在类别不平衡(67%)、交叉验证使用不足(21%)和模型稳定性评估不足(3%)等问题,88%的研究未处理缺失数据,仅34%讨论了泛化性问题 | 探讨深度学习在肺癌CT分割中的应用,以改善诊断、治疗和患者生存率 | 肺癌患者的CT扫描图像 | 计算机视觉 | 肺癌 | 深度学习 | UNet及其变体 | CT图像 | 124项研究符合纳入标准并进行了分析,主要使用LIDC-LIDR数据集 |
7566 | 2025-03-06 |
A Novel Pipeline for Adrenal Gland Segmentation: Integration of a Hybrid Post-Processing Technique with Deep Learning
2025-Mar-04, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01449-y
PMID:40038136
|
研究论文 | 本文提出了一种新的肾上腺分割流程,通过集成先进的预处理技术和强大的后处理框架,显著提高了左右肾上腺的分割精度 | 该研究创新性地结合了测试时间增强(TTA)和针对未连接区域的定向移除技术,显著提升了分割的准确性和鲁棒性 | NA | 提高CT图像中肾上腺的分割精度,以增强计算机辅助诊断和手术规划 | CT图像中的左右肾上腺 | 医学图像分割 | NA | 测试时间增强(TTA),未连接区域定向移除 | 2D UNet, VGG16, ResNet34, InceptionV3 | CT图像 | AMOS数据集 |
7567 | 2025-03-06 |
Spatiotemporal Profiling Defines Persistence and Resistance Dynamics during Targeted Treatment of Melanoma
2025-Mar-03, Cancer research
IF:12.5Q1
DOI:10.1158/0008-5472.CAN-24-0690
PMID:39700408
|
研究论文 | 本研究通过空间转录组学在患者来源的异种移植模型中捕捉了治疗期间的克隆谱系演化,揭示了BRAF突变黑色素瘤在靶向治疗中的持久性和耐药性动态 | 利用空间转录组学和深度学习技术,揭示了黑色素瘤在治疗期间的克隆谱系演化和耐药机制,并识别了潜在的治疗易感时间窗口 | 研究依赖于患者来源的异种移植模型,可能无法完全反映人类肿瘤的复杂性 | 研究BRAF突变黑色素瘤在靶向治疗中的持久性和耐药性动态,以识别防止治疗失败的策略 | BRAF突变黑色素瘤细胞 | 数字病理学 | 黑色素瘤 | 空间转录组学,深度学习 | 深度学习模型 | 转录组数据,组织病理学图像 | 患者来源的异种移植模型 |
7568 | 2025-03-06 |
A Feature Fusion Attention-based Deep Learning Algorithm for Mammographic Architectural Distortion Classification
2025-Mar-03, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2025.3547263
PMID:40031706
|
研究论文 | 本文提出了一种基于特征融合和注意力机制的深度学习算法,用于乳腺X线摄影中结构扭曲的分类 | 结合了Vision Transformer (ViT)注意力网络和VGG-16,提高了结构扭曲检测的准确性和效率 | 未提及具体局限性 | 提高乳腺X线摄影中结构扭曲检测的准确性和效率 | 乳腺X线摄影中的结构扭曲 | 计算机视觉 | 乳腺癌 | 深度学习 | Vision Transformer (ViT) + VGG-16 | 图像 | PINUM和DDSM数据集 |
7569 | 2025-03-06 |
Deep Point Cloud Edge Reconstruction Via Surface Patch Segmentation
2025-Mar-03, IEEE transactions on visualization and computer graphics
IF:4.7Q1
DOI:10.1109/TVCG.2025.3547411
PMID:40031714
|
研究论文 | 本文提出了一种通过表面补丁分割进行点云边缘重建的新方法,旨在解决现有方法在边缘点稀疏和非均匀分布情况下的拟合误差问题 | 引入了一种新颖的两阶段框架,通过表面补丁分割来精确和完整地重建边缘,并提出了PCER-Net网络同时进行表面补丁分割、边缘点检测和法线预测 | 虽然方法在实验中表现出色,但未提及在实际应用中的计算效率和资源消耗情况 | 解决点云数据参数化边缘重建中的拟合误差问题,提高重建精度和完整性 | 点云数据 | 计算机视觉 | NA | 深度学习 | PCER-Net | 点云数据 | 包括CAD和日常模型(家具)的多样化补丁-边缘数据集 |
7570 | 2025-03-06 |
PICASO Set Operator for Computational Nephropathology
2025-Mar-03, Kidney360
IF:3.2Q1
DOI:10.34067/KID.0000000668
PMID:40029711
|
研究论文 | 本文介绍了一种名为PICASO的新型排列不变集合操作符,用于动态聚合病理学特征,并在两种肾病场景中进行了应用 | PICASO是一种基于Transformer的集合操作符,能够动态聚合实例集合中的特征,显著提升了肾病病理诊断的性能 | 研究仅在两种肾病场景中进行了验证,尚未在其他病理学领域进行广泛测试 | 通过引入PICASO集合操作符,提升肾病病理诊断的准确性和性能 | IgA肾病中的活动性新月体病变检测和肾移植中的抗体介导排斥反应(AMR)分类 | 数字病理学 | 肾病 | 深度学习 | Transformer | 图像 | IgA肾病数据集包含6206个PAS染色的肾小球图像(5792个无活动性新月体,414个有活动性新月体),AMR分类数据集包含1655个PAS染色的肾小球图像(769个AMR,886个非AMR) |
7571 | 2025-03-06 |
GNINA 1.3: the next increment in molecular docking with deep learning
2025-Mar-02, Journal of cheminformatics
IF:7.1Q1
DOI:10.1186/s13321-025-00973-x
PMID:40025560
|
研究论文 | 本文介绍了开源分子对接软件GNINA的1.3版本,该版本更新了深度学习框架并引入了新的功能 | GNINA 1.3更新了深度学习框架至PyTorch,提高了计算效率,并引入了知识蒸馏的CNN评分函数,支持共价对接 | 未明确提及具体限制 | 提高分子对接的计算效率和准确性,支持共价对接 | 分子对接软件GNINA | 计算机辅助药物设计 | NA | 分子对接,深度学习 | CNN | 分子结构数据 | 使用CrossDocked2020 v1.3数据集进行训练 |
7572 | 2025-03-06 |
Magnetic resonance image denoising for Rician noise using a novel hybrid transformer-CNN network (HTC-net) and self-supervised pretraining
2025-Mar, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17562
PMID:39641989
|
研究论文 | 本文提出了一种结合Transformer和卷积神经网络(CNN)的混合网络(HTC-net)及自监督预训练策略,用于提高磁共振图像(MRI)的去噪性能 | 提出了一种新的混合Transformer-CNN网络(HTC-net),结合自监督预训练策略,有效利用长程信息并减少对配对MRI图像的需求 | 样本量有限,特别是配对的有噪和无噪MRI图像的数量限制了去噪性能 | 开发一种有效的深度学习方法,通过利用长程信息和预训练来提高MRI图像的去噪性能 | 磁共振图像(MRI) | 计算机视觉 | NA | 深度学习 | Transformer-CNN混合网络(HTC-net) | 图像 | 肺部HP 129Xe MRI数据集(1059张图像)和IXI数据集(5000张图像) |
7573 | 2025-03-06 |
A dual-decoder banded convolutional attention network for bone segmentation in ultrasound images
2025-Mar, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17545
PMID:39651711
|
研究论文 | 本文提出了一种双解码器带状卷积注意力网络(BCA-Net),用于超声图像中的骨骼分割,旨在提高计算机辅助骨科手术(CAOS)中骨骼结构提取的精确性和效率 | 提出了一种新的双解码器带状卷积注意力网络(BCA-Net),利用多尺度带状卷积核和任务一致性损失,显著提高了骨骼分割的准确性和效率 | 研究依赖于特定数据集(1623组超声图像),可能限制了模型的泛化能力 | 系统研究骨骼超声图像的特征提取和分割方法,提出一种创新的卷积神经网络以满足CAOS中精确和高效的骨骼结构提取需求 | 超声图像中的骨骼结构 | 计算机视觉 | 骨科疾病 | 卷积神经网络(CNN) | BCA-Net | 图像 | 1623组超声图像 |
7574 | 2025-03-06 |
Establishment of cancer cell radiosensitivity database linked to multi-layer omics data
2025-Mar, Cancer science
IF:4.5Q1
DOI:10.1111/cas.16334
PMID:39668120
|
研究论文 | 本文旨在建立一个与多层组学数据相关联的癌细胞放射敏感性数据库,以探索癌症放射敏感性 | 通过深度学习筛选大量文献,建立了一个包含285个细胞系的放射敏感性数据库,并与多层组学数据相关联 | 数据库的建立依赖于文献数据,可能存在数据质量和一致性的问题 | 探索癌症放射敏感性,并建立一个与多层组学数据相关联的放射敏感性数据库 | 癌细胞系 | 数字病理学 | 癌症 | 深度学习 | NA | 文献数据、组学数据 | 285个细胞系,来自28种癌症类型 |
7575 | 2025-03-06 |
Deep learning detected histological differences between invasive and non-invasive areas of early esophageal cancer
2025-Mar, Cancer science
IF:4.5Q1
DOI:10.1111/cas.16426
PMID:39692707
|
研究论文 | 本研究利用深度学习技术探索早期食管癌中浸润区与非浸润区的组织学差异 | 首次使用AI模型(CLAM)分析早期食管癌的浸润区与非浸润区的组织学差异,并发现浸润区血管数量和大小显著增加 | 样本量较小(75例),且仅针对食管鳞状细胞癌(ESCC)进行研究,未涵盖其他类型的食管癌 | 探索早期食管癌中浸润区与非浸润区的形态学差异,以揭示浸润机制 | 75例食管鳞状细胞癌(ESCC)患者的组织样本 | 数字病理学 | 食管癌 | 内镜黏膜下剥离术(ESD) | CLAM(聚类约束注意力多实例学习模型) | 图像 | 75例食管鳞状细胞癌(ESCC)患者的组织样本 |
7576 | 2025-03-06 |
Deep denoising approach to improve shear wave phase velocity map reconstruction in ultrasound elastography
2025-Mar, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17581
PMID:39714072
|
研究论文 | 本研究开发了一种深度学习方法来去噪超声剪切波弹性成像中的剪切波场,以改进剪切波相速度图像的重建 | 提出了一种基于深度学习的去噪方法,通过将粒子速度数据转换为时频表示,并使用编码器和解码器卷积块的神经网络来提取信号,显著提高了高噪声场景下的信噪比 | 研究主要基于模拟和实验数据,尚未在临床环境中进行大规模验证 | 改进超声剪切波弹性成像中的剪切波相速度图像重建 | 模拟体模和离体山羊肝组织数据 | 医学影像处理 | NA | 深度学习 | 卷积神经网络(CNN) | 超声图像 | 185,570个样本,其中80%用于训练,20%用于验证 |
7577 | 2025-03-06 |
Artificial intelligence-based tissue segmentation and cell identification in multiplex-stained histological endometriosis sections
2025-Mar-01, Human reproduction (Oxford, England)
DOI:10.1093/humrep/deae267
PMID:39724530
|
研究论文 | 本文探讨了如何通过人工智能技术对多重染色子宫内膜异位症切片进行组织分割和细胞识别,以理解组织组成 | 结合机器学习组织分析软件和深度学习算法,实现了对子宫内膜异位症切片的自动化组织分割和细胞识别 | 研究样本数量有限,未来需要增加样本量以细化亚型特异性差异,并应包含胶原丰富的无细胞区域的量化 | 实现子宫内膜异位症切片的自动化组织分割和细胞识别,以理解组织组成 | 子宫内膜异位症组织切片 | 数字病理学 | 子宫内膜异位症 | 多重免疫荧光染色 | 机器学习、深度学习 | 图像 | 8名不同亚型患者的子宫内膜异位症组织样本 |
7578 | 2025-03-06 |
Natural language processing of electronic health records for early detection of cognitive decline: a systematic review
2025-Mar-01, NPJ digital medicine
IF:12.4Q1
DOI:10.1038/s41746-025-01527-z
PMID:40025194
|
系统综述 | 本文系统评估了自然语言处理(NLP)方法在电子健康记录临床笔记中检测认知障碍的应用 | 本文首次系统性地评估了NLP在电子健康记录中检测认知障碍的性能,并比较了不同算法(规则基础、传统机器学习和深度学习)的效果 | 主要挑战包括电子健康记录数据捕获不完整、临床文档实践不一致以及外部验证有限 | 评估NLP在电子健康记录中检测认知障碍的有效性 | 电子健康记录中的临床笔记 | 自然语言处理 | 认知障碍 | 自然语言处理(NLP) | 规则基础算法、传统机器学习、深度学习 | 文本 | 1,064,530份临床笔记 |
7579 | 2025-03-06 |
Automatic Calculation of Cervical Spine Parameters Using Deep Learning: Development and Validation on an External Dataset
2025-Mar, Global spine journal
IF:2.6Q1
DOI:10.1177/21925682231205352
PMID:37811580
|
研究论文 | 本研究开发了一种深度学习模型,用于从颈椎侧位X光片中自动计算重要的脊柱参数 | 开发了一种能够从不同机构获取的图像中进行准确预测的深度学习模型,展示了其鲁棒性和高度泛化能力 | 研究仅使用了两个数据集进行训练和验证,样本量相对较小,可能影响模型的广泛适用性 | 开发并验证一种深度学习模型,用于自动计算颈椎侧位X光片中的脊柱参数 | 颈椎侧位X光片 | 计算机视觉 | 颈椎疾病 | 深度学习 | 深度学习模型 | 图像 | 1498张图像用于训练,79张图像用于外部验证 |
7580 | 2025-03-06 |
Predicting Progression in Adolescent Idiopathic Scoliosis at the First Visit by Integrating 2D Imaging and 1D Clinical Information
2025-Mar, Global spine journal
IF:2.6Q1
DOI:10.1177/21925682231211273
PMID:37903546
|
研究论文 | 本研究旨在通过整合患者首次就诊时的1D临床信息和2D影像数据,预测青少年特发性脊柱侧弯(AIS)的进展 | 首次提出了一种多维输入模型,结合了1D临床数据和2D影像数据,用于预测AIS的进展,并采用了改进的CapsuleNet架构 | 研究样本量相对较小,且仅限于接受支具治疗的患者 | 预测青少年特发性脊柱侧弯(AIS)的进展,以辅助临床医生个性化治疗 | 青少年特发性脊柱侧弯(AIS)患者 | 数字病理 | 脊柱侧弯 | 深度学习 | CapsuleNet | 1D临床数据和2D影像数据 | 463名AIS患者 |