深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 32197 篇文献,本页显示第 7561 - 7580 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
7561 2025-06-22
Hybrid adaptive attention deep supervision-guided U-Net for breast lesion segmentation in ultrasound computed tomography images
2025-Jun-09, Medical & biological engineering & computing IF:2.6Q3
研究论文 提出了一种基于深度学习的混合自适应注意力深度监督引导U-Net网络(HAA-DSUNet),用于乳腺超声计算机断层扫描(BUCT)图像中的乳腺病变分割 用混合自适应注意力模块(HAAM)替代U-Net的传统采样卷积模块,以扩大感受野并探索丰富的全局特征,同时保留精细细节;应用对比损失作为深度监督以减少上采样过程中的信息损失 NA 开发自动化乳腺癌诊断系统,用于早期筛查乳腺病变以提高患者生存率 乳腺超声计算机断层扫描(BUCT)图像中的乳腺病变 数字病理 乳腺癌 深度学习 HAA-DSUNet(基于U-Net的改进模型) 图像 两个UCT图像数据集HCH和HCH-PHMC
7562 2025-06-22
Classification of pediatric video capsule endoscopy images for small bowel abnormalities using deep learning models
2025-Jun-07, World journal of gastroenterology IF:4.3Q1
research paper 本研究使用深度学习模型对小儿视频胶囊内窥镜图像中的小肠异常进行分类 开发了一种基于深度学习的诊断工具,用于自动分类小儿VCE图像中的小肠病变,提高了诊断准确性和效率 研究为回顾性分析,可能存在选择偏倚;样本量相对较小,仅来自单一医疗中心 利用深度学习模型自动分类小儿VCE图像中的小肠病变 162名小儿患者的2298张高分辨率VCE图像 digital pathology inflammatory bowel disease video capsule endoscopy DenseNet121, VGG-16, ResNet50, vision transformer image 162名儿科患者的2298张图像
7563 2025-06-22
Trajectory-Ordered Objectives for Self-Supervised Representation Learning of Temporal Healthcare Data Using Transformers: Model Development and Evaluation Study
2025-Jun-04, JMIR medical informatics IF:3.1Q2
研究论文 本研究提出了一种名为TOO-BERT的基于Transformer的模型,通过整合新颖的轨迹顺序目标(TOO)来改进电子健康记录(EHR)序列的建模 引入了轨迹顺序目标(TOO)以增强模型对医疗事件间复杂时序依赖关系的理解,并通过条件选择过程进一步优化上下文理解和时序感知 研究仅针对两种特定的EHR数据集(MIMIC-IV和MDC)进行了评估,可能在其他数据集上的泛化能力有待验证 改进基于Transformer的模型在捕捉EHR数据中复杂时序依赖关系方面的能力 电子健康记录(EHR)中的患者轨迹数据 自然语言处理 心力衰竭、阿尔茨海默病 掩码语言建模(MLM)、自监督学习 Transformer(TOO-BERT) 电子健康记录(EHR)序列数据 MIMIC-IV数据集约1000万条医疗代码,MDC数据集约800万条医疗代码
7564 2025-06-22
Screening and Risk Analysis of Atrial Fibrillation After Radiotherapy for Breast Cancer: Protocol for the Cross-Sectional Cohort Study "Watch Your Heart (WATCH)"
2025-Jun-04, JMIR research protocols IF:1.4Q3
研究论文 该研究旨在通过WATCH队列研究评估乳腺癌放疗后心房颤动的发生率及其与心脏辐射暴露的关联 首次系统研究乳腺癌放疗后心房颤动的发生率,并探索心脏辐射暴露与心房颤动发生的关联 样本量相对较小(200名患者),且仅针对65岁以上的患者群体 评估乳腺癌放疗后心房颤动的发生率,并研究心脏辐射暴露与心房颤动发生的关联 65岁以上接受乳腺癌放疗5年且无心房颤动病史的患者 数字病理 乳腺癌 Withings ScanWatch智能手表监测、心电图(ECG)、经胸超声心动图(TTE) 深度学习算法 生理信号数据、医学影像数据 200名65岁以上接受乳腺癌放疗5年且无心房颤动病史的患者
7565 2025-06-22
Automated periodontal assessment in orthodontic patients: a dual CNN framework
2025-Jun-02, Clinical oral investigations IF:3.1Q1
研究论文 本研究开发了一种基于卷积神经网络(CNN)的系统,用于在正畸患者的口内图像中诊断牙结石、牙菌斑、牙龈增生和牙龈炎症 提出了一种双CNN框架(YOLOv8和混合U-Net + ResNet50模型),用于自动化牙周评估,提供快速和客观的评估 最终的诊断结论仍需依赖临床医生的专业知识和判断 开发深度学习系统以辅助正畸患者的牙周评估 正畸患者的口内图像 计算机视觉 牙周病 CNN YOLOv8, U-Net + ResNet50 图像 1000张正畸患者的侧位和正面口内图像
7566 2025-06-22
Predicting hemorrhagic transformation in acute ischemic stroke: a systematic review, meta-analysis, and methodological quality assessment of CT/MRI-based deep learning and radiomics models
2025-Jun, Emergency radiology IF:1.7Q3
meta-analysis 本文通过系统综述和荟萃分析评估了深度学习和放射组学在预测急性缺血性卒中出血性转化中的准确性和实用性 比较了深度学习模型、放射组学模型及临床结合模型的性能,发现临床结合模型表现最佳 存在中度至重度异质性,参考标准不一致且外部验证有限 优化急性缺血性卒中患者的治疗策略 急性缺血性卒中患者 digital pathology cardiovascular disease CT/MRI成像 DL和radiomics-based ML模型 医学影像 16项研究共3083名参与者
7567 2025-06-22
Evaluating anti-VEGF responses in diabetic macular edema: A systematic review with AI-powered treatment insights
2025-Jun-01, Indian journal of ophthalmology IF:2.1Q2
综述 本文系统回顾了深度学习和机器学习在评估糖尿病黄斑水肿患者抗VEGF治疗反应中的应用 利用AI算法区分抗VEGF治疗的应答者和非应答者,并评估多种机器学习模型在延长给药间隔耐受性分析中的效果 研究基于2016-2023年间发表的50篇相关论文,可能存在发表偏倚 评估AI技术在糖尿病黄斑水肿抗VEGF治疗反应预测中的应用效果 糖尿病黄斑水肿患者 数字病理学 糖尿病黄斑水肿 深度学习, 机器学习 LDA, ResNet-50, CNN with attention, QDA, RF, SVM 医学影像数据 50篇相关论文(2016-2023年)
7568 2025-06-22
SPARSITY-DRIVEN PARALLEL IMAGING CONSISTENCY FOR IMPROVED SELF-SUPERVISED MRI RECONSTRUCTION
2025-May-30, ArXiv
PMID:40492248
研究论文 提出了一种基于稀疏驱动的并行成像一致性方法,用于改进自监督MRI重建 通过精心设计的扰动训练物理驱动的深度学习网络,并在稀疏域中评估模型预测扰动的能力,从而减少伪影 在高加速率下应用时仍可能引入伪影,影响图像保真度 改进快速MRI扫描的重建质量 MRI图像重建 医学影像处理 NA 自监督学习 PD-DL(物理驱动的深度学习) MRI图像数据 fastMRI膝盖和大脑数据集
7569 2025-06-22
Automated landmark-based mid-sagittal plane: reliability for 3-dimensional mandibular asymmetry assessment on head CT scans
2025-May-26, Clinical oral investigations IF:3.1Q1
research paper 本研究评估了一种基于自动标记的中矢状面(MSP)在头部CT扫描中量化下颌骨不对称性的可靠性 提出了一种基于深度学习的自动标记方法构建MSP,用于评估下颌骨不对称性,并与手动方法进行比较 研究仅基于368例CT扫描,且自动方法的临床适用性需进一步验证 评估自动标记方法构建MSP在量化下颌骨不对称性中的可靠性 368例头部CT扫描,包括正颌手术患者 digital pathology NA deep learning-based method NA CT scans 368例头部CT扫描
7570 2025-06-22
Diagnostic performance of the ultrasound -based artificial intelligence diagnostic system in predicting cervical lymph node metastasis in patients with thyroid cancer: A systematic review and meta-analysis
2025 Apr-Jun, Science progress IF:2.6Q2
meta-analysis 本文通过系统回顾和荟萃分析评估了基于超声的人工智能系统在预测甲状腺癌患者颈部淋巴结转移中的诊断性能 首次系统评估了基于超声的AI系统在预测甲状腺癌颈部淋巴结转移中的诊断性能,并比较了不同设计(如深度学习与经典机器学习、多中心与单中心)的效果差异 需要前瞻性验证以确认临床适用性,且中国研究的特异性较低 评估基于超声的AI系统在预测甲状腺癌颈部淋巴结转移中的诊断性能 甲状腺癌患者及其颈部淋巴结转移情况 digital pathology thyroid cancer ultrasound, AI deep learning, classic machine learning image 19项研究
7571 2025-06-22
Machine learning models for predicting postoperative peritoneal metastasis after hepatocellular carcinoma rupture: a multicenter cohort study in China
2025-Jan-17, The oncologist
研究论文 本研究利用机器学习模型预测肝细胞癌破裂后腹膜转移的风险 首次比较了五种机器学习模型在预测肝细胞癌破裂后腹膜转移中的表现,并发现深度学习模型表现最佳 研究样本仅来自中国的7个医疗中心,可能存在地域局限性 开发预测肝细胞癌破裂手术后腹膜转移的最佳机器学习模型 522例接受手术的肝细胞癌破裂患者 机器学习 肝细胞癌 机器学习模型比较 逻辑回归、支持向量机、分类树、随机森林、深度学习(DL) 临床数据 522例患者(来自7个医疗中心)
7572 2025-06-22
Energy metric prediction for double insertion mutants via the RoseNet deep learning framework
2025, Bioinformatics advances IF:2.4Q2
研究论文 利用RoseNet深度学习框架预测双插入突变体的能量指标 扩展了先前的工作,评估了三种额外蛋白质,并分析了影响RoseNet预测能力的域特征,如插入二级结构和残基的溶剂可及表面积(SASA)分数 研究仅基于有限的蛋白质数据集,可能无法推广到所有类型的蛋白质突变 研究蛋白质双氨基酸插入或删除(InDels)的结构和功能影响 蛋白质的双插入突变体 生物信息学 NA 深度学习 RoseNet 蛋白质序列和结构数据 三个蛋白质的详尽双InDel突变数据集和另外三个蛋白质的约145k随机突变体
7573 2025-06-22
Generative AI - Assisted Adaptive Cancer Therapy
2025 Jan-Dec, Cancer control : journal of the Moffitt Cancer Center IF:2.5Q3
review 本文探讨了利用生成式AI(GenAI)提升适应性癌症治疗的预测和推荐能力 结合非线性系统控制理论和深度学习,提出了一个适应性癌症控制框架,利用GenAI增强治疗响应预测和治疗方案推荐 临床数据获取困难、深度学习模型的不透明性以及临床验证是主要挑战 研究如何利用GenAI提升适应性癌症治疗的准确性和可靠性 适应性癌症治疗及其动态调整策略 machine learning cancer deep learning GenAI multimodal data NA
7574 2025-06-22
H-DSAE: a hybrid technique to recognize heart disease
2025, Frontiers in physiology IF:3.2Q2
研究论文 本文提出了一种混合技术H-DSAE,用于识别心脏病,结合了深度信念网络、支持向量机和堆叠自编码器来提高诊断准确性 采用混合深度学习方法H-DSAE,结合多种分类器,显著提高了心脏病诊断的准确率至99.2% 下一步需要开发更先进的分类和特征算法以进一步提升系统效率 提高心脏病诊断的准确性和效率 心脏病患者的心脏图像数据 机器学习 心血管疾病 机器学习、深度学习 DBN, SVM, SAE 图像 NA
7575 2025-06-22
A dual-branch deep learning model based on fNIRS for assessing 3D visual fatigue
2025, Frontiers in neuroscience IF:3.2Q2
研究论文 本文提出了一种基于fNIRS的双分支深度学习模型,用于评估3D视觉疲劳 首次构建了基于fNIRS的深度学习模型,用于评估3D视觉疲劳,实现了端到端的自动特征提取和分类 未来工作可以探索模型在其他类型疲劳评估中的适用性,并进一步优化其在真实场景中的性能 提升用户体验并优化立体3D技术的性能 20名正常受试者(平均年龄:24.6±0.88岁;范围:23-26岁;13名男性) 机器学习 NA fNIRS 双分支卷积网络与transformer模块结合 时间序列fNIRS数据 20名正常受试者
7576 2025-06-22
IRGL-RRI: interpretable graph representation learning for plant RNA-RNA interaction discovery
2025, Frontiers in plant science IF:4.1Q1
研究论文 提出了一种可解释的图表示学习模型IRGL-RRI,用于准确预测植物RNA-RNA相互作用 结合Kolmogorov-Arnold Networks (KAN)和多尺度融合的RRI建模方法,提高了模型的可解释性和预测准确性 未提及模型在计算资源消耗或特定植物种类上的局限性 提高植物RNA-RNA相互作用预测的准确性和可解释性 植物RNA分子及其相互作用 机器学习 NA 图表示学习、KAN网络 IRGL-RRI(基于图表示学习的模型) RNA序列数据 公开数据集(具体数量未提及)
7577 2025-06-22
Class imbalance in multi-resident activity recognition: an evaluative study on explainability of deep learning approaches
2025, Universal access in the information society IF:2.1Q3
research paper 该研究探讨了在多居民活动识别中类别不平衡问题,并评估了深度学习方法的可解释性 研究针对多居民场景中的类别不平衡问题,探索了LSTM和双向LSTM网络的有效性,并提高了深度学习模型的透明度和可靠性 研究仅基于三个高度不平衡的智能家居数据集进行评估,可能无法涵盖所有实际应用场景 提高多居民活动识别系统的可信度和性能 多居民家庭中的活动识别 machine learning NA 深度学习 LSTM, Bidirectional LSTM 传感器数据 三个高度不平衡的智能家居数据集
7578 2025-06-22
Real-world application of a 3D deep learning model for detecting and localizing cerebral microbleeds
2024-09-26, Acta neurochirurgica IF:1.9Q2
研究论文 本研究验证了一种3D深度学习模型在真实世界环境中检测和定位脑微出血(CMBs)的性能 该模型不仅能检测CMBs,还能识别其解剖位置,且在真实世界环境中验证了其性能 需要更大规模和更多样化的人群研究以确立其临床实用性 验证3D深度学习模型在检测和定位脑微出血(CMBs)中的性能 脑微出血(CMBs)患者 数字病理学 脑血管疾病 3D深度学习 3D深度学习模型 医学影像 33名患者(21名有CMBs,12名无CMBs),共116个CMBs
7579 2025-06-22
Deep Learning-Based Image Analysis of Liver Steatosis in Mouse Models
2023-08, The American journal of pathology
research paper 本研究开发了一种基于深度神经网络的模型,用于量化肝组织切片中的微泡和大泡脂肪变性 使用深度学习模型自动识别和量化肝脂肪变性,与病理学家评估和EchoMRI测量结果高度一致 研究仅基于小鼠模型,未在人类样本中验证 开发一种高效量化非酒精性脂肪肝病的方法,用于临床前药物效果分析 野生型小鼠和两种基因修饰小鼠模型的肝组织 digital pathology nonalcoholic fatty liver disease hematoxylin-eosin staining, whole slide imaging deep neural network image 101张全切片图像
7580 2025-06-21
Computational models for prediction of m6A sites using deep learning
2025-Aug, Methods (San Diego, Calif.)
研究论文 本文综述并验证了多种深度学习方法在预测m6A位点上的应用,展示了深度学习模型在此领域的潜力 验证了多种深度学习方法在m6A位点预测上的效果,包括之前在此领域未充分利用的方法和专为生物序列设计的预训练模型 未提及具体的数据集大小或模型性能的详细比较 提高m6A修饰位点的准确识别,以更好地理解其功能和机制 m6A修饰位点 机器学习 NA 深度学习 预训练模型及其他基础深度学习方法 生物序列数据 基准数据集(具体数量未提及)
回到顶部