深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 26999 篇文献,本页显示第 741 - 760 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
741 2025-06-18
Open Access Data and Deep Learning for Cardiac Device Identification on Standard DICOM and Smartphone-based Chest Radiographs
2024-09, Radiology. Artificial intelligence
研究论文 开发并评估了一个公开可用的深度学习模型,用于在DICOM和智能手机拍摄的胸部X光片上分割和分类心脏植入电子设备(CIEDs) 首次提出一个公开可用的深度学习模型,能够同时在传统DICOM和智能手机拍摄的胸部X光片上准确分割和分类CIEDs 研究为回顾性研究,可能受到数据选择和采集方式的限制 开发一个深度学习模型,用于自动识别和分类胸部X光片中的心脏植入电子设备 心脏植入电子设备(CIEDs),包括起搏器、心脏除颤器、心脏再同步治疗设备和心脏监测器 数字病理 心血管疾病 深度学习 U-Net with ResNet-50 backbone 图像 897名患者的2321张胸部X光片,以及使用5部智能手机拍摄的11072张图像
742 2025-06-18
Presurgical Upgrade Prediction of DCIS to Invasive Ductal Carcinoma Using Time-dependent Deep Learning Models with DCE MRI
2024-09, Radiology. Artificial intelligence
研究论文 本研究探讨了时间依赖的深度学习模型在预测导管原位癌(DCIS)术前升级为浸润性导管癌方面的性能 使用时间依赖的深度学习模型(CNN-LSTM)无需病灶分割即可预测DCIS升级为浸润性恶性肿瘤,性能优于单时间点模型 样本量较小(154例),且为回顾性研究 评估时间依赖深度学习模型在预测DCIS升级为浸润性恶性肿瘤中的效能 154例活检证实的DCIS病例(25例术后升级,129例未升级) 数字病理学 乳腺癌 动态对比增强MRI(DCE MRI) CNN-LSTM MRI图像 154例DCIS病例
743 2025-06-18
Improving Computer-aided Detection for Digital Breast Tomosynthesis by Incorporating Temporal Change
2024-09, Radiology. Artificial intelligence
研究论文 开发了一种利用时间信息改进数字乳腺断层合成(DBT)癌症病变检测性能的深度学习算法 通过引入PriorNet作为级联深度学习模块,利用额外的生长信息来优化恶性肿瘤的最终概率,从而提高了检测性能 研究为回顾性分析,可能受到数据选择和时间的限制 提高数字乳腺断层合成(DBT)中癌症病变的计算机辅助检测性能 数字乳腺断层合成(DBT)筛查检查中的癌症和非癌症病例 计算机视觉 乳腺癌 深度学习 PriorNet 图像 973例癌症和7123例非癌症病例
744 2025-06-18
nnU-Net-based Segmentation of Tumor Subcompartments in Pediatric Medulloblastoma Using Multiparametric MRI: A Multi-institutional Study
2024-09, Radiology. Artificial intelligence
research paper 本研究评估了基于nnU-Net的分割模型在儿童髓母细胞瘤多参数MRI上的自动分割性能 使用nnU-Net模型进行儿童髓母细胞瘤肿瘤亚区的自动分割,并比较了迁移学习和直接深度学习两种训练策略 样本量相对较小(78例),且数据来自三个不同机构,可能存在异质性 评估nnU-Net模型在儿童髓母细胞瘤MRI图像上的分割性能 儿童髓母细胞瘤患者的多参数MRI图像 digital pathology pediatric medulloblastoma MRI(钆增强T1加权、T2加权和液体衰减反转恢复) nnU-Net image 78例儿童髓母细胞瘤患者(52男,26女),年龄2-18岁,来自三个不同机构
745 2025-06-18
Deep Learning Segmentation of Infiltrative and Enhancing Cellular Tumor at Pre- and Posttreatment Multishell Diffusion MRI of Glioblastoma
2024-09, Radiology. Artificial intelligence
research paper 开发并验证了一种深度学习方法,用于在胶质母细胞瘤患者的治疗前后MRI扫描中检测和分割增强和非增强细胞肿瘤,并预测总体生存期(OS)和无进展生存期(PFS) 使用nnU-Net深度学习模型结合多模态MRI数据(包括灌注和多壳扩散成像)来分割细胞肿瘤,并预测患者的生存期 研究为回顾性研究,可能存在选择偏差,且外部验证数据集的样本量不均 开发一种能够准确分割胶质母细胞瘤细胞肿瘤并预测患者生存期的深度学习方法 胶质母细胞瘤患者的治疗前后MRI扫描 digital pathology glioblastoma multishell diffusion MRI, perfusion imaging nnU-Net MRI scans 内部数据集包括243个MRI扫描(1297名患者),外部测试集包括55、70、610和419个MRI扫描
746 2025-06-18
Deep Learning-based Unsupervised Domain Adaptation via a Unified Model for Prostate Lesion Detection Using Multisite Biparametric MRI Datasets
2024-09, Radiology. Artificial intelligence
研究论文 本研究开发了一种基于深度学习的无监督域适应方法,通过统一生成模型改进多站点双参数MRI数据集中的前列腺癌检测性能 提出了一种新颖的无监督域适应方法,使用统一生成模型将不同b值获取的DWI图像转换为符合PI-RADS指南推荐的风格,显著提高了前列腺癌检测的准确性 研究为回顾性研究,且仅针对双参数MRI数据 提高多站点双参数MRI数据集中前列腺癌检测的准确性 前列腺癌病变检测 数字病理 前列腺癌 双参数MRI,扩散加权成像(DWI),表观扩散系数(ADC) 统一生成模型 MRI图像 5150名患者(14191个样本)用于训练,1692个测试病例(2393个样本)用于评估
747 2025-06-18
Improving Fairness of Automated Chest Radiograph Diagnosis by Contrastive Learning
2024-09, Radiology. Artificial intelligence
研究论文 开发一种使用监督对比学习(SCL)的人工智能模型,以减少胸部X光诊断中的偏见 采用监督对比学习(SCL)方法,通过精心选择的正负样本生成公平的图像嵌入,以减少诊断偏见 研究为回顾性研究,可能受到数据收集时间和范围的限制 减少胸部X光诊断中的偏见,提高深度学习方法在诊断中的公平性和可靠性 胸部X光图像 计算机辅助诊断(CAD) COVID-19及其他胸部异常(如肺不张、心脏肥大、肺炎等) 监督对比学习(SCL) CNN 图像 MIDRC数据集包含27,796名患者的77,887张胸部X光图像,ChestX-ray14数据集包含30,805名患者的112,120张胸部X光图像
748 2025-06-18
Stepwise Transfer Learning for Expert-level Pediatric Brain Tumor MRI Segmentation in a Limited Data Scenario
2024-07, Radiology. Artificial intelligence
research paper 该研究开发并评估了一种使用逐步迁移学习的深度学习模型,用于在有限数据场景下进行儿科脑肿瘤MRI分割 采用逐步迁移学习方法在有限数据场景下优化模型性能,实现了专家级别的自动分割 研究依赖于回顾性数据,且样本量相对有限 开发并验证一种高效的儿科脑肿瘤MRI自动分割模型 儿科低级别胶质瘤的MRI图像 digital pathology pediatric brain tumors MRI deep learning neural networks image 284例儿科脑肿瘤患者的T2加权MRI图像(184例来自国家脑肿瘤联盟,100例来自儿科癌症中心)
749 2025-06-18
Impact of Transfer Learning Using Local Data on Performance of a Deep Learning Model for Screening Mammography
2024-07, Radiology. Artificial intelligence
研究论文 评估在澳大利亚本地数据集上使用迁移学习对纽约大学开发的乳腺X线摄影深度学习系统性能的影响 研究了深度学习模型在不同地理数据集上的泛化能力和可复制性,并探讨了迁移学习对模型性能的提升作用 研究为回顾性研究,且所有参与者均为女性,可能限制结果的普遍适用性 评估深度学习模型在乳腺X线摄影筛查中的泛化能力和性能 乳腺X线摄影图像 数字病理 乳腺癌 深度学习 CNN 图像 959名女性参与者(平均年龄62.5岁±8.5)
750 2025-06-18
Improving Automated Hemorrhage Detection at Sparse-View CT via U-Net-based Artifact Reduction
2024-07, Radiology. Artificial intelligence
research paper 本研究探讨了基于深度学习的伪影减少技术在稀疏视图颅脑CT扫描中的应用及其对自动出血检测的影响 使用U-Net进行伪影减少,显著提高了稀疏视图颅脑CT扫描中的自动出血检测性能 研究为回顾性研究,且仅基于模拟的稀疏视图CT数据 提高稀疏视图颅脑CT扫描中自动出血检测的准确性 稀疏视图颅脑CT扫描图像 digital pathology hemorrhage CT扫描 U-Net, EfficientNet-B2 image 3000名患者的模拟稀疏视图CT数据,以及17545名患者的全视图CT数据
751 2025-06-18
Deep Learning for Breast Cancer Risk Prediction: Application to a Large Representative UK Screening Cohort
2024-07, Radiology. Artificial intelligence
研究论文 开发了一种基于深度学习的AI工具,用于从当前阴性筛查乳腺X光检查中预测未来乳腺癌风险,并在英国国家卫生服务乳腺筛查计划的数据上进行了评估 利用深度学习技术从阴性筛查乳腺X光检查中预测未来乳腺癌风险,并在大规模代表性英国筛查队列中验证模型性能 研究仅基于英国三个站点的数据,可能无法完全代表其他地区或人群 开发并验证一种能够预测未来乳腺癌风险的AI工具 50-70岁无癌症女性患者的筛查乳腺X光检查 数字病理学 乳腺癌 深度学习 AI深度学习模型 乳腺X光图像 5264风险阳性和191488风险阴性检查,包括89,285训练集、2,106验证集和39,351测试集
752 2024-08-07
Vision Transformer-based Deep Learning Models Accelerate Further Research for Predicting Neurosurgical Intervention
2024-07, Radiology. Artificial intelligence
NA NA NA NA NA NA NA NA NA NA NA NA
753 2025-06-18
Providing context: Extracting non-linear and dynamic temporal motifs from brain activity
2024-Jun-27, bioRxiv : the preprint server for biology
研究论文 本研究提出了一种使用非线性深度学习模型(DSVAE)从静息态功能磁共振成像(rs-fMRI)中提取非线性动态时间模式的新方法 使用解耦变分自编码器(DSVAE)分离窗口特定(上下文)信息和时间步特定(局部)信息,以捕捉多时间尺度的差异 NA 分析rs-fMRI动态特性,探索精神分裂症患者与对照组在脑活动模式上的差异 精神分裂症患者和对照组受试者的rs-fMRI数据 神经影像分析 精神分裂症 rs-fMRI DSVAE(解耦变分自编码器) 功能磁共振成像数据 NA
754 2025-06-18
Deep Learning Segmentation of Ascites on Abdominal CT Scans for Automatic Volume Quantification
2024-Jun-23, ArXiv
PMID:39398214
research paper 评估一种自动化深度学习方法在检测腹水并量化其体积方面的性能,研究对象为肝硬化和卵巢癌患者 提出了一种基于深度学习的自动分割和量化腹水体积的方法,并在多机构数据集上验证了其性能 研究为回顾性研究,可能受到数据选择和标注偏差的影响 开发并验证一种自动量化腹水体积的深度学习方法 肝硬化及卵巢癌患者的腹水 digital pathology liver cirrhosis, ovarian cancer deep learning CNN CT scans 315 patients (25 NIH-LC, 166 NIH-OV, 124 UofW-LC)
755 2025-06-18
Epistasis regulates genetic control of cardiac hypertrophy
2024-May-04, medRxiv : the preprint server for health sciences
研究论文 本文研究了心脏肥大的遗传调控机制,特别是基因变异的非加性相互作用(上位性) 开发了低信号符号迭代随机森林方法,用于揭示心脏肥大的复杂遗传结构,并通过单细胞形态分析验证了特定基因对的非加性相互作用 上位性关系的检测方法仍处于早期阶段,可能存在未被识别的相互作用 探索心脏肥大遗传调控中的上位性效应 人类心脏组织、诱导多能干细胞衍生的心肌细胞 遗传学 心血管疾病 心脏MRI、RNA沉默、单细胞形态分析、高通量微流控系统 随机森林、深度学习 基因组数据、影像数据、转录组数据 29,661名UK Biobank参与者的心脏MRI扫描数据,313例人类心脏组织的转录组数据
756 2025-06-18
Impact of AI for Digital Breast Tomosynthesis on Breast Cancer Detection and Interpretation Time
2024-05, Radiology. Artificial intelligence
研究论文 开发了一种用于数字乳腺断层合成(DBT)图像乳腺癌诊断的人工智能(AI)模型,并研究其是否能提高诊断准确性和减少放射科医生的阅读时间 AI模型在乳腺癌检测中显示出比放射科医生更高的诊断准确性,并显著减少了阅读时间 研究样本来自14个机构,但可能仍存在地域和人群代表性不足的问题 提高乳腺癌诊断的准确性和效率 数字乳腺断层合成(DBT)图像 数字病理学 乳腺癌 深度学习 深度学习AI算法 图像 258名女性(平均年龄56岁±13.41),包括65例癌症病例
757 2025-06-18
Noninvasive Molecular Subtyping of Pediatric Low-Grade Glioma with Self-Supervised Transfer Learning
2024-05, Radiology. Artificial intelligence
研究论文 开发并外部测试了一种基于MRI的无创深度学习流程,用于儿童低级别胶质瘤的分子亚型分类 结合迁移学习和自监督交叉训练(TransferX)以及共识逻辑,提高了在有限数据场景下的分类性能和泛化能力 研究为回顾性研究,样本量相对有限(开发数据集214例,外部测试112例) 开发无创、基于MRI的儿童低级别胶质瘤突变状态分类方法 儿童低级别胶质瘤患者 数字病理 儿童低级别胶质瘤 MRI CNN 医学影像 开发数据集214例(男性113例),外部测试112例(男性55例)
758 2025-06-18
Semi-supervised Learning for Generalizable Intracranial Hemorrhage Detection and Segmentation
2024-05, Radiology. Artificial intelligence
research paper 开发并评估了一种半监督学习模型,用于在分布外的头部CT评估集上进行颅内出血检测和分割 利用半监督学习框架结合标记和未标记数据,提升了模型在分布外数据上的泛化能力 研究依赖于特定机构的标记数据和外部未标记数据,可能影响模型的广泛适用性 提高颅内出血检测和分割的泛化能力 头部CT扫描图像 digital pathology Traumatic Brain Injury semi-supervised learning deep learning model image 457标记样本和25,000未标记样本用于训练,481次扫描用于分类测试,23次扫描(529张图像)用于分割测试
759 2025-06-18
Evaluating the Robustness of a Deep Learning Bone Age Algorithm to Clinical Image Variation Using Computational Stress Testing
2024-05, Radiology. Artificial intelligence
research paper 评估一种获奖的深度学习骨龄算法对临床图像变化的鲁棒性 通过计算应力测试评估深度学习模型对多种图像外观变化的鲁棒性 模型对经过简单变换的图像预测结果不一致 评估深度学习骨龄模型对图像变化的鲁棒性 儿科手部X光片 digital pathology pediatric disease deep learning CNN image 2627 pediatric hand radiographs (1425 from RSNA validation set and 1202 from DHA)
760 2025-06-18
Impact of Deep Learning Image Reconstruction Methods on MRI Throughput
2024-05, Radiology. Artificial intelligence
研究论文 评估两种不同的商用深度学习重建(DLR)算法在大型多中心机构门诊环境中对MRI检查效率的影响 比较了DICOM基础和k空间基础的DLR方法在减少MRI扫描和房间时间方面的效果 研究结果因检查类型而异,潜在采用者需根据具体情况评估这些工具的影响 评估DLR算法对MRI检查效率的影响 7346例来自10台临床MRI扫描仪的检查 医学影像 NA 深度学习重建(DLR) NA MRI图像 7346例检查
回到顶部