深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24457 篇文献,本页显示第 7621 - 7640 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
7621 2025-02-17
AI predictive models and advancements in microdissection testicular sperm extraction for non-obstructive azoospermia: a systematic scoping review
2025, Human reproduction open IF:8.3Q1
系统范围综述 本文综述了人工智能(AI)模型在预测非梗阻性无精子症(NOA)患者进行显微睾丸精子提取(m-TESE)手术中精子获取成功率方面的准确性和潜力 首次系统评估了AI模型在预测m-TESE手术结果中的应用,整合了临床、激素、组织病理学和遗传因素 研究设计的异质性、样本量小、缺乏验证研究以及仅依赖PubMed和Scopus两个数据库可能限制了研究结果的广泛适用性 评估AI模型在预测NOA患者m-TESE手术中精子获取成功率的准确性和潜力 非梗阻性无精子症(NOA)患者 生殖医学 非梗阻性无精子症 机器学习、深度学习、逻辑回归 AI预测模型 临床数据、激素水平、组织病理学评估、遗传参数 45项研究,具体样本量未明确
7622 2025-02-17
Tricuspid valve flow measurement using a deep learning framework for automated valve-tracking 2D phase contrast
2024-Nov, Magnetic resonance in medicine IF:3.0Q2
研究论文 本文开发了一种自动瓣膜追踪的2D方法,用于测量动态三尖瓣的血流速度 使用深度学习网络TVnet自动追踪三尖瓣平面,并应用于动态2D相位对比成像 样本量较小,仅包括9名健康受试者和2名患者 评估三尖瓣血流速度,解决心血管MR测量中的挑战 健康受试者和患者的三尖瓣血流 计算机视觉 心血管疾病 2D相位对比成像 深度学习网络TVnet 图像 9名健康受试者和2名患者
7623 2025-02-17
Diffusion Correction in Fricke Hydrogel Dosimeters: A Deep Learning Approach with 2D and 3D Physics-Informed Neural Network Models
2024-Aug-30, Gels (Basel, Switzerland)
研究论文 本文提出了一种创新的深度学习方法,利用2D和3D物理信息神经网络模型来解决Fricke凝胶剂量计中离子扩散导致的剂量分布测量不准确的问题 首次将物理信息神经网络(PINNs)应用于Fricke凝胶剂量计中,通过将物理定律直接融入学习过程,优化网络以遵循离子扩散的物理原理,从而准确重建原始离子分布 研究仅针对数值模拟数据进行测试,未涉及实际实验数据的验证 提高Fricke凝胶剂量计在辐射剂量测量中的精度,克服离子扩散对剂量分布测量的影响 Fricke凝胶剂量计中的离子扩散现象 机器学习 NA 物理信息神经网络(PINNs) PINNs 2D和3D数据 数值模拟数据,时间跨度从20到100小时
7624 2025-02-17
BioMapAI: Artificial Intelligence Multi-Omics Modeling of Myalgic Encephalomyelitis / Chronic Fatigue Syndrome
2024-Jun-28, bioRxiv : the preprint server for biology
研究论文 本文介绍了BioMapAI,一个可解释的深度学习框架,用于建模肌痛性脑脊髓炎/慢性疲劳综合征(ME/CFS)的多组学数据 开发了BioMapAI框架,首次使用最丰富的纵向多组学数据集进行ME/CFS研究,并创建了健康和疾病状态下的组学连接图 NA 解决ME/CFS和长期COVID等慢性疾病的高异质性和多因素病因及进展问题,改善诊断和治疗 肌痛性脑脊髓炎/慢性疲劳综合征(ME/CFS)患者 机器学习 慢性疲劳综合征 多组学分析 深度学习 多组学数据(包括肠道宏基因组学、血浆代谢组、免疫分析、血液实验室数据和临床症状) NA
7625 2025-02-17
Universal representation learning for multivariate time series using the instance-level and cluster-level supervised contrastive learning
2024-May, Data mining and knowledge discovery IF:2.8Q2
研究论文 本文提出了一种新的监督对比学习方法(SupCon-TSC),用于多变量时间序列分类任务,以提高分类性能并学习可解释的低维表示 提出了实例级和集群级的监督对比学习方法,以捕捉上下文信息并学习多变量时间序列数据集的判别性和通用表示 在小型数据集上的表现较好,但在更大规模数据集上的效果尚未验证 提高多变量时间序列分类任务的性能,特别是在标签数据有限的情况下 多变量时间序列数据 机器学习 NA 监督对比学习 SupCon-TSC 时间序列数据 两个小型心肺运动测试(CPET)数据集和UEA多变量时间序列档案
7626 2025-02-17
Clinical efficacy of motion-insensitive imaging technique with deep learning reconstruction to improve image quality in cervical spine MR imaging
2024-Mar-28, The British journal of radiology
研究论文 本研究探讨了结合深度学习重建(DLR)的T2周期性旋转重叠平行线增强重建(PROPELLER)技术在颈椎MRI中提高图像质量和降低图像噪声的临床效果 结合深度学习重建(DLR)的PROPELLER技术首次应用于颈椎MRI,显著提高了图像质量和降低了噪声 样本量较小(35例患者),且研究时间较短(2020年12月至2021年3月) 评估PROPELLER技术与DLR结合在颈椎MRI中的图像质量和噪声改善效果 35例接受颈椎MRI检查的患者 医学影像 颈椎疾病 T2 PROPELLER技术,深度学习重建(DLR) 深度学习模型 MRI图像 35例患者
7627 2025-02-17
Characterizing Anti-Vaping Posts for Effective Communication on Instagram Using Multimodal Deep Learning
2024-Feb-15, Nicotine & tobacco research : official journal of the Society for Research on Nicotine and Tobacco IF:3.0Q2
研究论文 本研究旨在通过人工智能识别Instagram上反电子烟图片帖子中与高社交媒体用户参与度相关的关键特征 利用深度学习模型和统计模型识别反电子烟Instagram图片帖子中与高用户参与度显著相关的特征 研究主要基于Instagram平台,可能不适用于其他社交媒体平台 识别反电子烟Instagram图片帖子中与高社交媒体用户参与度相关的关键特征 Instagram上的反电子烟图片帖子 自然语言处理 NA 深度学习模型(OpenAI: contrastive language-image pre-training with ViT-B/32)和统计模型(负二项回归模型) CNN(ViT-B/32) 图像和文本 8972个反电子烟Instagram图片帖子,其中2200个手工编码
7628 2025-02-17
End-to-end deep learning method for predicting hormonal treatment response in women with atypical endometrial hyperplasia or endometrial cancer
2024-Jan, Journal of medical imaging (Bellingham, Wash.)
研究论文 本研究探讨了使用深度学习模型预测非典型子宫内膜增生或子宫内膜癌患者对激素治疗反应的可行性 首次使用全切片图像(WSI)和混合监督的端到端机器学习模型来预测激素治疗反应 样本量较小(112例患者),且仅来自两个临床中心,可能影响模型的泛化能力 探索使用深度学习模型预测非典型子宫内膜增生或子宫内膜癌患者对激素治疗反应的可行性 非典型子宫内膜增生(AEH)或子宫内膜癌(EC)患者 数字病理学 子宫内膜癌 深度学习 Autoencoder, ResNet50 图像 112例患者
7629 2025-02-16
Unsupervised cross talk suppression for self-interference digital holography
2025-Feb-15, Optics letters IF:3.1Q2
研究论文 本文提出了一种基于循环一致性生成对抗网络(CycleGAN)的无监督串扰抑制方法,用于自干涉数字全息术 创新点在于提出了一种无需配对训练数据的无监督学习方法,通过显著性约束避免图像内容失真 在实际实验中,获取配对数据集以完成训练是困难的 研究目的是提高自干涉数字全息术在非相干成像领域的分辨率 自干涉数字全息术中的串扰信息 计算机视觉 NA 自干涉数字全息术 CycleGAN 图像 NA
7630 2025-02-16
Fourier-inspired single-pixel holography
2025-Feb-15, Optics letters IF:3.1Q2
研究论文 本文介绍了一种名为傅里叶启发的单像素全息术(FISH)的有效数字全息术方法,该方法使用单像素探测器而非传统相机来捕捉光场信息 FISH结合了傅里叶单像素成像和离轴全息技术,能够直接获取有用信息,而无需在空间域记录全息图并在傅里叶域过滤不需要的项,此外,还采用深度学习技术联合优化采样掩模和成像增强模型,以在低采样率下实现高质量结果 NA 探索并验证一种新的数字全息术方法,以在低采样率下实现高质量的单像素相位成像 光场信息的捕捉与成像 计算机视觉 NA 傅里叶单像素成像、离轴全息技术、深度学习 深度学习模型 光场信息 NA
7631 2025-02-16
A deep learning model to predict dose distributions for breast cancer radiotherapy
2025-Feb-12, Discover oncology IF:2.8Q2
研究论文 本文提出了一种基于3D U-Net的深度学习模型,用于准确预测乳腺癌放射治疗的剂量分布 该模型采用了双编码器组合注意力(DECA)模块、跨阶段部分+Resnet+注意力(CRA)模块、难度感知和关键区域损失等创新技术 研究仅针对乳腺癌患者,未涉及其他类型的癌症 提高乳腺癌放射治疗的剂量分布预测精度和规划效率 乳腺癌患者 计算机视觉 乳腺癌 深度学习 3D U-Net 3D图像 176名乳腺癌患者
7632 2025-02-16
OHID-1: A New Large Hyperspectral Image Dataset for Multi-Classification
2025-Feb-12, Scientific data IF:5.8Q1
研究论文 本文介绍了一个新的大规模高光谱图像数据集OHID-1,旨在提升高光谱图像分类性能并挑战现有算法 OHID-1数据集提供了更复杂的特征和更高的分类复杂性,包含7个类别标签,覆盖更广的区域 NA 提升高光谱图像分类性能并挑战现有高光谱图像处理算法 高光谱图像数据集OHID-1 计算机视觉 NA NA NA 高光谱图像 10幅高光谱图像,来自中国珠海市不同区域
7633 2025-02-16
Steering drilling wellbore trajectory prediction based on the NOA-LSTM-FCNN method
2025-Feb-12, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于NOA-LSTM-FCNN方法的导向钻井井眼轨迹预测方法,旨在解决复杂地质条件下井眼轨迹难以准确预测的问题 结合NOA、LSTM和FCNN,提出了一种新的井眼轨迹预测方法,显著提高了预测精度 NA 提高复杂地质条件下井眼轨迹的预测精度 井眼轨迹数据 机器学习 NA NA LSTM, FCNN 井眼轨迹数据 NA
7634 2025-02-16
A machine learning model for detecting and quantifying tropical cyclone related disturbance and recovery in estuaries
2025-Feb-12, Scientific reports IF:3.8Q1
研究论文 本研究开发了一种基于机器学习的模型,用于检测和量化热带气旋对河口生态系统造成的干扰及其恢复时间 利用LSTM深度学习模型检测干扰并量化其严重性,同时开发基于高斯滤波的算法评估恢复时间 模型主要关注河口水质的变化,未全面考虑其他生态系统因素 开发一种能够检测和量化热带气旋对河口生态系统干扰及其恢复时间的模型 河口生态系统,特别是水质变化 机器学习 NA LSTM深度学习模型,高斯滤波算法 LSTM 时间序列数据 NOAA国家河口研究保护区系统的数据
7635 2025-02-16
Universal attention guided adversarial defense using feature pyramid and non-local mechanisms
2025-Feb-12, Scientific reports IF:3.8Q1
研究论文 本文提出了一种通用的注意力引导对抗防御方法,通过特征金字塔和非局部机制增强深度神经网络对对抗样本的防御能力 提出了两种防御模块:基于特征金字塔的注意力空间引导(FPAS)模块和基于注意力的非局部(ANL)模块,分别用于对抗注意力转移攻击和注意力衰减攻击 未明确提及具体局限性 提高深度神经网络对对抗样本的防御能力,特别是在高安全领域中的应用 对抗样本及其对深度神经网络的影响 机器学习 NA NA Wide-ResNet 图像 未明确提及具体样本数量
7636 2025-02-14
Author Correction: An automated deep learning pipeline for EMVI classification and response prediction of rectal cancer using baseline MRI: a multi-centre study
2025-Feb-12, NPJ precision oncology IF:6.8Q1
NA NA NA NA NA NA NA NA NA NA NA NA
7637 2025-02-16
Optical Microscopy and Deep Learning for Absolute Quantification of Nanoparticles on a Macroscopic Scale and Estimating Their Number Concentration
2025-Feb-11, Analytical chemistry IF:6.7Q1
研究论文 本文提出了一种简单且绝对的方法来估计纳米颗粒的数量浓度,通过光学显微镜和深度学习技术实现宏观尺度上的纳米颗粒绝对定量 创新点在于结合光学显微镜和人工神经网络,提出了一种称为蒸发体积分析(EVA)的新方法,能够在宏观尺度上对纳米颗粒进行绝对定量 讨论了EVA的理论限制,如检测限、定量限和最佳工作范围 研究目的是开发一种简单且绝对的方法来估计纳米颗粒的数量浓度 研究对象是纳米颗粒,特别是60 nm Tm掺杂的光子上转换纳米颗粒、80 nm Nile红掺杂的聚苯乙烯纳米颗粒和90 nm银纳米颗粒 计算机视觉 NA 光学显微镜、人工神经网络 人工神经网络 图像 每个液滴中的数千个纳米颗粒
7638 2025-02-16
Deep Learning-Driven Single-Lead ECG Classification: A Rapid Approach for Comprehensive Cardiac Diagnostics
2025-Feb-06, Diagnostics (Basel, Switzerland)
研究论文 本研究探讨了使用先进深度学习模型对单导联心电图数据进行分类的潜力,以解决资源有限或偏远地区对可访问、早期和准确心脏诊断的迫切需求 研究从传统的多导联心电图分析转向单导联心电图数据,探索了深度学习模型在心脏疾病分类中的应用,并评估了五种最先进的深度学习架构的性能 研究中未提及数据集的多样性和样本量,可能影响模型的泛化能力 解决资源有限或偏远地区对可访问、早期和准确心脏诊断的需求 单导联心电图数据 机器学习 心血管疾病 深度学习 Inception, DenseNet201, MobileNetV2, NASNetLarge, VGG16 心电图数据 NA
7639 2025-02-16
Harnessing Artificial Intelligence in Obesity Research and Management: A Comprehensive Review
2025-Feb-06, Diagnostics (Basel, Switzerland)
综述 本文综述了人工智能(AI),特别是机器学习和深度学习在肥胖研究和管理中的临床应用,包括风险因素识别、结果预测、个性化治疗和医疗干预的改进 本文综合评估了AI在肥胖研究和管理中的应用,包括多种AI驱动模型的使用,如机器学习和深度学习,用于肥胖预测、患者分层和个性化管理策略 AI模型的有效性受数据集类型、研究目标和模型可解释性的影响,且存在数据质量、伦理考虑和技术要求等挑战 探索AI在肥胖研究和治疗中的应用,以改进肥胖的预测、管理和个性化治疗 肥胖相关的研究和管理 机器学习 肥胖 机器学习和深度学习 机器学习和深度学习模型 遗传、表观遗传和临床数据 NA
7640 2025-02-16
Applications of Artificial Intelligence for Metastatic Gastrointestinal Cancer: A Systematic Literature Review
2025-Feb-06, Cancers IF:4.5Q1
系统文献综述 本文系统综述了人工智能在转移性胃肠道癌症诊断、治疗和随访中的应用 总结了AI技术在提高诊断准确性、预测治疗结果和识别预后生物标志物方面的潜力 依赖回顾性数据、影像协议不一致、样本量小、数据预处理和模型可解释性问题 探讨人工智能在转移性胃肠道癌症中的应用 转移性胃肠道癌症 机器学习 胃肠道癌症 NA 机器学习和深度学习模型 NA 46项研究
回到顶部