本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7661 | 2025-05-29 |
Performance of the automated digital cell image analyzer UIMD PBIA in white blood cell classification: a comparative study with sysmex DI-60
2025-Jun-26, Clinical chemistry and laboratory medicine
IF:3.8Q1
DOI:10.1515/cclm-2024-1323
PMID:39837502
|
research paper | 本研究评估了基于深度学习的自动化数字形态分析仪PBIA在白细胞分类中的性能,并与广泛使用的DI-60进行了比较 | 使用深度学习技术的PBIA在白细胞分类中表现出优于传统DI-60的性能 | 需要进一步的多中心研究进行完全验证,且在异常细胞识别上存在一定的假阳性和假阴性率 | 评估和比较自动化数字形态分析仪在白细胞分类中的性能 | 外周血涂片中的白细胞 | digital pathology | NA | deep learning | NA | image | 461张涂片 |
7662 | 2025-03-06 |
Research on the development of image-based Deep Learning (DL) model for serum quality recognition
2025-Jun-26, Clinical chemistry and laboratory medicine
IF:3.8Q1
DOI:10.1515/cclm-2024-1219
PMID:40042089
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
7663 | 2025-05-29 |
Optimizing MR-based attenuation correction in hybrid PET/MR using deep learning: validation with a flatbed insert and consistent patient positioning
2025-Jun, European journal of nuclear medicine and molecular imaging
IF:8.6Q1
DOI:10.1007/s00259-025-07086-5
PMID:39912939
|
研究论文 | 本研究利用平板插入物和手臂下定位在PET/CT扫描中实现精确的MR-CT匹配,以评估MR-based衰减校正(MRAC)的准确性 | 使用平板插入物和手臂下定位解决PET/MR中MRAC验证的挑战,并开发基于深度学习的框架生成合成CT图像 | 在骨丰富区域(如脊柱和肝脏)的再现性较低 | 优化PET/MR中的MR-based衰减校正(MRAC)方法 | 21名患者 | 医学影像处理 | NA | PET/CT, PET/MR, 深度学习 | 深度学习框架 | 医学影像(PET/CT, PET/MR) | 21名患者(验证数据集),300名患者(训练数据集) |
7664 | 2025-05-29 |
Evaluation of deep learning-based scatter correction on a long-axial field-of-view PET scanner
2025-Jun, European journal of nuclear medicine and molecular imaging
IF:8.6Q1
DOI:10.1007/s00259-025-07120-6
PMID:39918764
|
研究论文 | 评估基于深度学习的散射校正方法在长轴视野PET扫描仪上的性能 | 提出了一种基于U-Net架构的深度学习散射估计方法,相比传统的单散射模拟方法,在长轴视野PET系统中表现出更高的准确性和鲁棒性 | 方法在[18F]-PSMA数据集上的表现虽然一致,但未使用该类型数据进行训练 | 评估深度学习散射估计方法在长轴视野全身PET扫描仪上的性能 | 长轴视野PET系统的散射校正 | 医学影像处理 | NA | PET成像,蒙特卡洛模拟 | CNN U-Net | PET影像数据 | 7个[18F]-FDG和[18F]-PSMA临床数据集 |
7665 | 2025-05-29 |
Eliminating the second CT scan of dual-tracer total-body PET/CT via deep learning-based image synthesis and registration
2025-Jun, European journal of nuclear medicine and molecular imaging
IF:8.6Q1
DOI:10.1007/s00259-025-07113-5
PMID:39932542
|
研究论文 | 本研究开发并验证了一种深度学习框架,旨在消除双示踪剂全身PET/CT成像中的第二次CT扫描 | 结合了注册生成对抗网络(RegGAN)和非刚性配准技术,首次实现了将第一次扫描的衰减校正CT(ACCT)图像转换为第二次扫描的伪ACCT图像 | 研究仅基于247名患者的回顾性数据,未进行前瞻性验证 | 开发一种减少双示踪剂全身PET/CT成像中CT辐射剂量的方法 | 接受双示踪剂全身PET/CT成像的患者 | 医学影像分析 | NA | 深度学习、PET/CT成像 | RegGAN(注册生成对抗网络) | 医学影像(CT和PET图像) | 247名患者(167名接受[68Ga]Ga-DOTATATE/[18F]FDG,50名接受[68Ga]Ga-PSMA-11/[18F]FDG,30名接受[68Ga]Ga-FAPI-04/[18F]FDG) |
7666 | 2025-05-29 |
Skin Cancer Detection Using Deep Learning Approaches
2025-Jun, Cancer biotherapy & radiopharmaceuticals
DOI:10.1089/cbr.2024.0161
PMID:40151158
|
review | 该综述探讨了多种深度学习方法在皮肤病变识别和分类中的应用 | 评估了不同深度学习方法在皮肤癌检测中的表现,特别是CNN在视觉病变识别中的高准确性和GAN在训练增强中的潜力 | 现有数据集存在肤色多样性不足、计算需求高、病变表示不均等问题,可能影响模型的效率、包容性和泛化能力 | 通过深度学习方法提高皮肤癌的早期检测效率和准确性 | 皮肤病变图像 | computer vision | skin cancer | deep learning | CNN, GAN, ANN, KNN | image | NA |
7667 | 2025-05-29 |
Deep learning-based intraoperative visual guidance model for ureter identification in laparoscopic sigmoidectomy
2025-Jun, Surgical endoscopy
DOI:10.1007/s00464-025-11694-5
PMID:40263136
|
研究论文 | 本研究评估了一种基于深度学习的计算机视觉模型在腹腔镜乙状结肠切除术中实时识别左侧输尿管的性能 | 开发了基于语义分割算法的深度学习模型,用于腹腔镜手术中输尿管的实时识别,并实现了高精度的实时操作 | 样本量有限,手术方法缺乏多样性,手术过程不完整,且缺乏外部验证 | 评估深度学习模型在腹腔镜乙状结肠切除术中实时识别左侧输尿管的可行性 | 腹腔镜乙状结肠切除术中的左侧输尿管 | 计算机视觉 | NA | 语义分割算法 | YOLO 8 和 YOLO 11 | 视频 | 86 例腹腔镜乙状结肠切除术录像,1237 张手动标注的图像 |
7668 | 2025-05-29 |
A magnetic resonance imaging (MRI)-based deep learning radiomics model predicts recurrence-free survival in lung cancer patients after surgical resection of brain metastases
2025-Jun, Clinical radiology
IF:2.1Q2
DOI:10.1016/j.crad.2025.106920
PMID:40300277
|
研究论文 | 开发并验证了一种基于MRI的深度学习放射组学模型(DLRM),用于预测肺癌患者脑转移(BrMs)手术切除后的无复发生存期(RFS) | 整合了临床和形态学MRI预测因子、手工特征和深度学习特征,构建了一个新的DLRM模型,用于预测RFS | 研究为回顾性设计,样本量相对较小(215例患者),且仅基于五个中心的数据 | 预测肺癌患者脑转移手术切除后的无复发生存期 | 肺癌患者(215例) | 数字病理学 | 肺癌 | MRI | 深度学习放射组学模型(DLRM) | 图像 | 215例肺癌患者(167例训练集,48例外部测试集) |
7669 | 2025-05-29 |
Deep learning for liver lesion segmentation and classification on staging CT scans of colorectal cancer patients: a multi-site technical validation study
2025-Jun, Clinical radiology
IF:2.1Q2
DOI:10.1016/j.crad.2025.106914
PMID:40327945
|
research paper | 该研究验证了一种基于深度学习的肝脏病灶检测和分类模型在结直肠癌患者分期CT扫描中的应用 | 该模型在肝脏病灶检测和分割方面表现出色,尤其是对于亚厘米级病灶,且作为结直肠癌分期筛查工具具有潜力 | 分类准确性中等,特异性较低 | 验证深度学习模型在结直肠癌患者分期CT扫描中肝脏病灶检测和分类的性能 | 结直肠癌患者的肝脏病灶 | digital pathology | colorectal cancer | CT扫描 | UNet | image | 220例结直肠癌分期CT扫描(2014-2019年) |
7670 | 2025-05-29 |
DeepMBEnzy: An AI-Driven Database of Mycotoxin Biotransformation Enzymes
2025-May-28, Journal of agricultural and food chemistry
IF:5.7Q1
DOI:10.1021/acs.jafc.5c02477
PMID:40378051
|
研究论文 | 开发了一个名为DeepMBEnzy的AI驱动数据库,用于预测和存档霉菌毒素生物转化酶 | 通过微调预训练模型并使用冷蛋白数据分割方法,开发了EPP-MB模型,用于预测霉菌毒素生物转化酶,并构建了DeepMBEnzy数据库 | 目前仅识别了少数霉菌毒素生物转化酶,且模型的验证准确率为79%,仍有提升空间 | 促进霉菌毒素解毒研究和应用中的酶候选物的探索和利用 | 霉菌毒素及其生物转化酶 | 机器学习 | NA | 深度学习 | 预训练模型微调 | 蛋白质数据 | 超过4000种霉菌毒素 |
7671 | 2025-05-29 |
Data augmentation using masked principal component representation for deep learning-based SSVEP-BCIs
2025-May-28, Journal of neural engineering
IF:3.7Q2
DOI:10.1088/1741-2552/add9d1
PMID:40378852
|
研究论文 | 本研究提出了一种基于主成分表示掩码的数据增强方法(MPCR),用于提升基于稳态视觉诱发电位的脑机接口(BCI)中深度学习模型的分类准确率 | 提出了一种新的组件级数据增强方法MPCR,通过主成分表示和随机掩码策略引入随机扰动,同时保留EEG信号的主要内在结构 | 未明确提及具体局限性,但暗示当前信号级数据增强方法可能导致EEG信号显著失真 | 提升基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)中深度学习模型的分类准确率 | 稳态视觉诱发电位(SSVEP)和脑电图(EEG)信号 | 脑机接口(BCI) | NA | 主成分分析(PCA)和随机掩码策略 | 深度学习模型(未指定具体类型) | 脑电图(EEG)信号 | 两个广泛使用的公共数据集(未明确样本数量) |
7672 | 2025-05-29 |
Human and Deep Learning Predictions of Peripheral Lung Cancer Using a 1.3 mm Video Endoscopic Probe
2025-May-28, Respirology (Carlton, Vic.)
DOI:10.1111/resp.70057
PMID:40433758
|
研究论文 | 本研究评估了不同经验水平的医生和人工智能在Iriscope外周内窥镜检查中预测小外周肺结节恶性性质的能力 | 首次结合1.3毫米视频内窥探头Iriscope与深度学习模型,比较人类医生与AI对小外周肺结节的诊断能力 | 样本量较小(61例患者),且深度学习模型的表现未超越资深医生 | 评估Iriscope外周内窥镜技术结合AI在诊断小外周肺结节恶性性质中的应用价值 | 外周肺结节(PPNs)患者 | 数字病理学 | 肺癌 | r-EBUS支气管镜检查结合Iriscope视频内窥镜技术 | 深度学习模型(未指定具体类型) | 内窥镜视频图像 | 61例患有小外周肺结节(中位大小15毫米)的患者 |
7673 | 2025-05-29 |
Brain stimulation outcome prediction in Major Depressive Disorder by deep learning models using EEG representations
2025-May-28, Computer methods in biomechanics and biomedical engineering
IF:1.7Q3
DOI:10.1080/10255842.2025.2511222
PMID:40434017
|
research paper | 该研究利用深度学习模型基于脑电图(EEG)表征预测重度抑郁症(MDD)患者对重复经颅磁刺激(rTMS)治疗的反应 | 开发了一种基于三种预训练卷积神经网络(DenseNet121、EfficientNetB0和Xception)的深度混合神经网络,用于从三种EEG表征中预测治疗效果,其中使用原始EEG图像序列的分类准确率最高达到94.7% | 研究样本量较小(83名患者),且未提及模型在其他独立数据集上的验证情况 | 开发个体化治疗选择框架,以节省MDD患者的治疗时间和成本,并避免可能的副作用 | 83名接受rTMS治疗的MDD患者 | digital pathology | geriatric disease | EEG, rTMS | CNN (DenseNet121, EfficientNetB0, Xception) | EEG信号(包括小波变换图像、电极间连接矩阵和原始EEG信号) | 83名MDD患者 |
7674 | 2025-05-29 |
Frontalis Only Contracts in One Direction: AI-Quantum Elasticity and Resistance Gradient Reveals True Nature of Forehead Muscle Movement
2025-May-27, Aesthetic plastic surgery
IF:2.0Q2
DOI:10.1007/s00266-025-04924-7
PMID:40425886
|
research paper | 本研究通过AI驱动的生物力学模型和量子弹性与阻力梯度(QERG)模型,揭示了额肌收缩的单向性及其与皮肤相互作用的机制 | 引入了量子弹性与阻力梯度(QERG)模型,挑战了传统的双向收缩理论,并通过AI模型高精度预测皮肤行为 | 研究样本虽多样化,但可能未涵盖所有可能的种族和年龄组,且证据等级为III级,需进一步验证 | 探究额肌收缩的生物力学特性及其与皮肤相互作用的真实机制 | 额肌收缩及其对皮肤的动态影响 | 生物力学 | NA | 深度学习框架(TensorFlow, PyTorch)、有限元分析、随机森林、深度神经网络 | AI-driven biomechanical model, QERG model | 3D面部扫描数据 | 600名不同种族、性别和年龄的受试者 |
7675 | 2025-05-29 |
Development of a No-Reference CT Image Quality Assessment Method Using RadImageNet Pre-trained Deep Learning Models
2025-May-27, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01542-2
PMID:40425960
|
研究论文 | 提出了一种基于RadImageNet预训练深度学习模型的无参考CT图像质量评估方法 | 利用结合噪声和模糊两种退化因素的数据集训练CNN模型,并采用RadImageNet预训练模型增强对真实世界退化的适应性 | 仅考虑了噪声和模糊两种退化因素,可能未涵盖所有实际临床中的退化类型 | 开发一种无需参考图像即可准确评估CT图像质量的方法 | CT图像 | 计算机视觉 | NA | 深度学习 | CNN(ResNet50, DenseNet121, InceptionV3, InceptionResNetV2) | 图像 | 人工退化图像数据集和真实临床图像数据集 |
7676 | 2025-05-29 |
Deep Learning Auto-segmentation of Diffuse Midline Glioma on Multimodal Magnetic Resonance Images
2025-May-27, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01557-9
PMID:40425959
|
研究论文 | 开发了一种基于改进CNN的3D-Unet工具,用于自动准确分割弥漫性中线胶质瘤(DMG)在磁共振(MR)图像中的区域 | 首次针对DMG开发了自动分割工具,采用改进的3D U-Net架构,结合多种MR图像序列,实现了高精度的肿瘤分割 | 样本量相对较小(52名患者,70张图像),且仅针对特定类型的儿科脑干癌 | 提高DMG肿瘤分割的自动化水平和准确性,以支持诊断和预测模型的开发 | 弥漫性中线胶质瘤(DMG)H3 K27M突变型患者的MR图像 | 数字病理学 | 脑癌 | 磁共振成像(MRI) | 3D U-Net with residual blocks | 图像 | 52名DMG患者,70张MR图像(包含T1W、T2W和FLAIR序列) |
7677 | 2025-05-29 |
PlaNet-S: an Automatic Semantic Segmentation Model for Placenta Using U-Net and SegNeXt
2025-May-27, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01549-9
PMID:40425958
|
研究论文 | 本研究开发了一个名为PlaNet-S的自动胎盘语义分割模型,结合了U-Net和SegNeXt架构 | 通过集成学习结合U-Net和SegNeXt架构,提出了一种新的胎盘自动分割模型PlaNet-S,显著提高了分割精度 | 与U-Net++的性能差异无统计学意义,且样本量相对有限 | 开发一个全自动的胎盘语义分割模型,以解决医生辅助手动分割耗时的问题 | 218名疑似胎盘异常的孕妇的MRI图像 | 数字病理学 | 胎盘异常 | MRI | U-Net, SegNeXt, 集成学习 | 图像 | 218名孕妇的1090张标注图像 |
7678 | 2025-05-29 |
EnsembleEdgeFusion: advancing semantic segmentation in microvascular decompression imaging with innovative ensemble techniques
2025-May-23, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-02470-5
PMID:40410312
|
research paper | 该研究提出了一种创新的集成技术EnsembleEdgeFusion,用于提升微血管减压影像中的语义分割性能 | 引入了集成技术(如堆叠和装袋)来提升分割性能,特别是装袋与朴素贝叶斯方法结合表现出显著改进 | 公开可用的数据集稀缺,且专家标注要求高 | 提升微血管减压影像中的语义分割性能 | 2003张RGB微血管减压影像及其标注掩码 | digital pathology | NA | 语义分割 | DeepLabv3+, U-Net, DilatedFastFCN with JPU, DANet, Vanilla architecture | image | 2003张RGB微血管减压影像 |
7679 | 2025-05-29 |
Multicenter development of a deep learning radiomics and dosiomics nomogram to predict radiation pneumonia risk in non-small cell lung cancer
2025-May-16, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-02045-4
PMID:40379764
|
研究论文 | 本研究旨在开发一个结合放射组学、剂量组学和深度学习的模型,以预测非小细胞肺癌患者放疗后肺炎的风险 | 结合放射组学、剂量组学和深度学习特征,构建多维度预测模型,提高预测准确性 | 研究为回顾性设计,样本量相对较小(245例患者) | 提高非小细胞肺癌患者放疗后肺炎风险的预测能力 | 非小细胞肺癌患者 | 数字病理 | 肺癌 | 放射组学、剂量组学、深度学习 | 深度学习放射组学和剂量组学列线图(DLRDN) | CT图像、剂量测定图像 | 245例非小细胞肺癌患者(来自三家医院) |
7680 | 2025-05-29 |
Deep Learning-Based Retinoblastoma Protein Subtyping of Pulmonary Large-Cell Neuroendocrine Carcinoma on Small Hematoxylin and Eosin-Stained Specimens
2025-May-08, Laboratory investigation; a journal of technical methods and pathology
DOI:10.1016/j.labinv.2025.104192
PMID:40345665
|
研究论文 | 本研究探讨了深度学习在基于小苏木精和伊红染色样本的肺大细胞神经内分泌癌中视网膜母细胞瘤蛋白亚型分型的应用 | 开发了一种定制的卷积神经网络,用于预测小样本中pRb的二元表达,显著优于病理学家的传统分类方法 | 样本量相对较小,仅包含143个切除标本和21例患者的活检样本 | 探索深度学习在肺大细胞神经内分泌癌分子亚型分型中的应用潜力 | 肺大细胞神经内分泌癌(LCNEC)组织样本 | 数字病理学 | 肺癌 | 深度学习 | CNN | 图像 | 143个切除标本和21例患者的活检样本 |