本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7701 | 2025-02-25 |
Construction of an antidepressant priority list based on functional, environmental, and health risks using an interpretable mixup-transformer deep learning model
2024-08-05, Journal of hazardous materials
IF:12.2Q1
DOI:10.1016/j.jhazmat.2024.134651
PMID:38843640
|
研究论文 | 本研究构建了一个基于功能、环境及健康风险的抗抑郁药物优先级筛选系统(ADRank),并采用改进的mixup-transformer深度学习模型进行分类,以提高分类准确性和可靠性 | 采用改进的mixup-transformer深度学习模型,相较于随机森林模型,分类准确性提高了23.25%,可靠性提高了80% | 研究中未明确提及样本量及数据来源的具体细节 | 构建抗抑郁药物的风险优先级筛选系统,以识别和管理抗抑郁药物的风险 | 抗抑郁药物(AD) | 机器学习 | NA | 深度学习 | mixup-transformer | NA | NA |
7702 | 2025-02-25 |
Early detection of nicosulfuron toxicity and physiological prediction in maize using multi-branch deep learning models and hyperspectral imaging
2024-08-05, Journal of hazardous materials
IF:12.2Q1
DOI:10.1016/j.jhazmat.2024.134723
PMID:38815392
|
研究论文 | 本研究利用多分支深度学习模型和高光谱成像技术,开发了HerbiNet模型,用于早期检测玉米中nicosulfuron除草剂的毒性 | 开发了HerbiNet和HerbiNet-Lite模型,能够早期准确预测玉米中nicosulfuron的毒性,并在不同年份和季节的数据集上表现出更高的泛化能力 | 研究仅针对nicosulfuron一种除草剂,未涉及其他除草剂的毒性检测 | 开发早期检测玉米中除草剂毒性的方法,以保护玉米生产和田间环境 | 玉米作物及其高光谱图像 | 计算机视觉 | NA | 高光谱成像 | 多分支深度学习模型 | 图像 | NA |
7703 | 2025-02-25 |
Deep Learning Analysis of Surgical Video Recordings to Assess Nontechnical Skills
2024-07-01, JAMA network open
IF:10.5Q1
|
研究论文 | 本研究探讨了利用手术视频记录中的运动特征自动评估心脏手术过程中非技术技能的可行性 | 首次使用深度学习技术从手术视频中提取运动特征,以自动评估手术团队的非技术技能 | 研究仅在一家医院进行,且样本量较小,需要进一步在不同医院和专科中验证结果 | 探索自动评估手术室非技术技能的方法,以提高手术表现和患者安全 | 心脏手术过程中的手术团队 | 计算机视觉 | 心血管疾病 | OpenPose库用于视频分析 | 深度学习 | 视频 | 30例完整的心脏手术过程 |
7704 | 2025-02-25 |
CEUS in prediction of early recurrence of hepatocellular carcinoma after curative resection and to stratify the risk of early recurrence: a retrospective observational study
2024-06, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04252-5
PMID:38557770
|
研究论文 | 本研究探讨了术前对比增强超声(CEUS)在预测肝细胞癌(HCC)根治性切除术后早期复发(ER)中的作用,并分层了ER的风险 | 首次使用CEUS结合DL放射组学复发评分来预测HCC的早期复发,并基于预测因子数量对患者进行风险分层 | 研究为回顾性观察研究,可能存在选择偏差 | 预测肝细胞癌根治性切除术后的早期复发并分层风险 | 556名在2011年1月至2018年12月期间接受根治性切除术的HCC患者 | 数字病理 | 肝细胞癌 | 对比增强超声(CEUS) | 深度学习(DL) | 图像 | 556名HCC患者 |
7705 | 2025-02-25 |
Deep learning-based image reconstruction for the multi-arterial phase images: improvement of the image quality to assess the small hypervascular hepatic tumor on gadoxetic acid-enhanced liver MRI
2024-06, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04236-5
PMID:38512517
|
研究论文 | 本文评估了基于深度学习的图像重建技术在多动脉期磁共振成像(MA-MRI)中对小血管性肝肿瘤图像质量的提升效果 | 首次将深度学习技术应用于多动脉期磁共振成像的图像重建,显著提高了图像质量 | 研究样本量较小,且为回顾性研究,可能影响结果的普遍性 | 评估深度学习图像重建技术在多动脉期磁共振成像中的应用效果 | 55名患有小血管性肝肿瘤的成年患者 | 计算机视觉 | 肝肿瘤 | 深度学习图像重建 | 深度学习模型 | 图像 | 55名成年患者 |
7706 | 2025-02-25 |
Noninvasive diagnosis of liver cirrhosis: qualitative and quantitative imaging biomarkers
2024-06, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04225-8
PMID:38372765
|
综述 | 本文综述了用于非侵入性诊断肝硬化的定性和定量影像生物标志物,并讨论了评估肝功能和预后的挑战及未来方向 | 介绍了影像组学和深度学习在提高诊断准确性并减少主观性方面的应用 | 部分定量影像特征尚未在临床实践中应用 | 探讨非侵入性诊断肝硬化的影像生物标志物及其在评估肝功能和预后中的应用 | 肝硬化患者 | 数字病理学 | 肝硬化 | 超声、CT、MRI、弹性成像技术、影像组学、深度学习 | NA | 影像数据 | NA |
7707 | 2025-02-25 |
Detection of urinary tract stones on submillisievert abdominopelvic CT imaging with deep-learning image reconstruction algorithm (DLIR)
2024-06, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04223-w
PMID:38470506
|
研究论文 | 本研究评估了使用深度学习图像重建算法(DLIR)在亚毫西弗腹部盆腔CT成像中检测尿路结石的诊断性能和图像质量 | 首次在亚毫西弗腹部盆腔CT成像中应用深度学习图像重建算法(DLIR),并评估其在尿路结石检测中的诊断性能和图像质量 | 样本量较小,仅57名患者参与研究 | 评估亚毫西弗腹部盆腔CT成像在尿路结石检测中的诊断性能和图像质量 | 57名疑似尿路结石患者 | 数字病理 | 尿路结石 | CT成像 | 深度学习图像重建算法(DLIR) | 图像 | 57名患者,共检测到266颗结石 |
7708 | 2025-02-25 |
Scribe: Next Generation Library Searching for DDA Experiments
2023-02-03, Journal of proteome research
IF:3.8Q1
DOI:10.1021/acs.jproteome.2c00672
PMID:36695531
|
研究论文 | 本文介绍了Scribe,一种新的库搜索引擎,旨在利用深度学习碎片预测软件如Prosit,通过预测FASTA数据库中每个肽的碎片和保留时间,提高数据依赖采集实验的灵敏度和定量精度 | Scribe利用深度学习预测肽的碎片和保留时间,而非依赖高度策划的DDA库,从而提高了库搜索的灵敏度和定量精度 | NA | 提高数据依赖采集实验的库搜索效率和准确性 | 肽的碎片和保留时间 | 蛋白质组学 | NA | 深度学习碎片预测软件Prosit | NA | 质谱数据 | NA |
7709 | 2025-02-24 |
Dynamic cycles between brain states during creative storytelling
2025-Mar, NeuroImage
IF:4.7Q1
DOI:10.1016/j.neuroimage.2025.121053
PMID:39863001
|
研究论文 | 本文通过功能性磁共振成像(fMRI)研究,探讨了创造性思维过程中不同脑状态之间的动态转换 | 通过fMRI和深度学习方法,揭示了创造性思维过程中自发思维和刻意思维之间的交替互动,以及不同脑状态之间的转换模式 | 样本量较小,仅包括41名大学生,可能限制了结果的普遍性 | 探讨创造性思维过程中不同脑状态之间的动态转换及其认知和神经机制 | 41名大学生 | 神经科学 | NA | 功能性磁共振成像(fMRI) | 深度学习 | 脑成像数据 | 41名大学生 |
7710 | 2025-02-24 |
Beyond averaging: A transformer approach to decoding event related brain potentials
2025-Mar, NeuroImage
IF:4.7Q1
DOI:10.1016/j.neuroimage.2025.121049
PMID:39864567
|
研究论文 | 本研究评估了基于Transformer的深度学习方法在处理事件相关脑电位(ERPs)方面的潜力,与传统平均方法相比,该方法能提供更深入的神经信号分析 | 使用Transformer网络中的注意力机制,生成注意力图,揭示了传统平均方法未能发现的相关电位时间窗口 | 研究样本量较小,仅包含29名正常听力参与者,且实验设计局限于声音感知的特定情境 | 评估Transformer方法在分析事件相关脑电位(ERPs)中的应用效果 | 29名18至30岁正常听力参与者的脑电图(EEG)数据 | 机器学习 | NA | 脑电图(EEG) | 卷积Transformer | 脑电图(EEG)信号 | 29名正常听力参与者 |
7711 | 2025-02-24 |
Research of orthodontic soft tissue profile prediction based on conditional generative adversarial networks
2025-Mar, Journal of dentistry
IF:4.8Q1
DOI:10.1016/j.jdent.2025.105570
PMID:39864612
|
研究论文 | 本研究构建了一种新的条件生成对抗网络(CGAN)模型,用于预测正畸治疗后的侧面外观变化 | 提出了一种新的深度学习模型soft-P-CGAN,结合了条件向量输入模块、基于U-Net的生成器模块和基于PatchGAN的判别器模块,设计了软损失以增强软组织轮廓的生成,并通过多尺度特征金字塔提高图像质量 | 下颌区域的预测相对不准确 | 预测正畸治疗后的侧面外观变化 | 成人患者的侧位头颅X光片 | 计算机视觉 | NA | 条件生成对抗网络(CGAN) | soft-P-CGAN | 图像 | NA |
7712 | 2025-02-24 |
Automated diagnosis and classification of temporomandibular joint degenerative disease via artificial intelligence using CBCT imaging
2025-Mar, Journal of dentistry
IF:4.8Q1
DOI:10.1016/j.jdent.2025.105592
PMID:39870190
|
研究论文 | 本研究利用人工智能技术,通过CBCT影像实现颞下颌关节退行性疾病的自动诊断和分类 | 使用YOLOv10算法构建的AI模型能够检测颞下颌关节退行性疾病,并区分其典型的影像学特征,如侵蚀、骨赘、硬化和软骨下囊肿 | 模型在检测具有多个退行性疾病特征的影像时,准确率有所下降 | 实现颞下颌关节退行性疾病的自动诊断和分类 | 1018名患者的7357张CBCT影像 | 计算机视觉 | 颞下颌关节退行性疾病 | CBCT成像 | YOLOv10 | 影像 | 7357张CBCT影像(来自1018名患者) |
7713 | 2025-02-24 |
Enhancing Functional Protein Design Using Heuristic Optimization and Deep Learning for Anti-Inflammatory and Gene Therapy Applications
2025-Feb-22, Proteins
IF:3.2Q2
DOI:10.1002/prot.26810
PMID:39985803
|
研究论文 | 本研究开发了一种启发式优化方法,用于增强蛋白质的关键功能,如溶解性、灵活性和稳定性,同时保持蛋白质的结构完整性 | 结合启发式优化和深度学习,设计出功能更强且结构完整的蛋白质,特别适用于抗炎和基因治疗应用 | 未提及具体实验验证或临床应用的局限性 | 提高蛋白质序列设计的功能性和实验室可生产性 | 蛋白质序列 | 机器学习 | NA | 深度学习、启发式优化、遗传算法 | NA | 蛋白质序列数据 | 未提及具体样本数量 |
7714 | 2025-02-24 |
Design and developing a robot-assisted cell batch microinjection system for zebrafish embryo
2025-Feb-20, Microsystems & nanoengineering
IF:7.3Q1
DOI:10.1038/s41378-024-00809-y
PMID:39979250
|
研究论文 | 本文开发了一种新型的自动化系统,用于斑马鱼胚胎的细胞微注射 | 首次提出并集成了具有微力感知功能的微注射器,以判断细胞是否成功穿刺,并采用深度学习模型检测斑马鱼胚胎的卵黄中心,定位注射针在卵黄中的位置,从而提高细胞注射的精度 | NA | 提高斑马鱼胚胎细胞微注射的效率和精度 | 斑马鱼胚胎 | 生物医学工程 | NA | 微流控芯片技术,深度学习 | 深度学习模型 | 图像 | NA |
7715 | 2025-02-24 |
FaultSeg: A Dataset for Train Wheel Defect Detection
2025-Feb-20, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-025-04557-0
PMID:39979297
|
研究论文 | 本文介绍了FaultSeg数据集,用于全球铁路运输中自动检测火车车轮缺陷 | 提出了一个包含829张手动注释图像的数据集,用于训练和测试深度学习模型,以自动检测火车车轮的缺陷 | 数据集仅包含829张图像,可能不足以涵盖所有可能的缺陷类型和场景 | 开发一个用于自动检测火车车轮缺陷的数据集,以提高铁路运输的安全性 | 火车车轮的缺陷检测 | 计算机视觉 | NA | 深度学习 | YOLOv9 | 图像 | 829张手动注释的火车车轮缺陷图像 |
7716 | 2025-02-24 |
Design of tomato picking robot detection and localization system based on deep learning neural networks algorithm of Yolov5
2025-Feb-20, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-90080-6
PMID:39979369
|
研究论文 | 本文提出了一种基于YOLOv5深度学习算法和SGBM算法的番茄检测与定位系统,以提高复杂环境下番茄的检测精度和三维定位 | 结合YOLOv5深度学习算法和SGBM算法,实现了番茄在复杂环境下的高精度检测和三维定位 | 实验仅在温室环境下进行,未涉及其他复杂农业环境 | 提高番茄采摘机器人在复杂环境下的检测和定位精度 | 番茄 | 计算机视觉 | NA | YOLOv5深度学习算法, SGBM算法 | YOLOv5 | 图像 | 640张番茄图像 |
7717 | 2025-02-22 |
Author Correction: Cough2COVID-19 detection using an enhanced multi layer ensemble deep learning framework and CoughFeatureRanker
2025-Feb-20, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-90514-1
PMID:39979555
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
7718 | 2025-02-24 |
Plantar Thermogram Analysis Using Deep Learning for Diabetic Foot Risk Classification
2025-Feb-20, Journal of diabetes science and technology
IF:4.1Q2
DOI:10.1177/19322968251316563
PMID:39980256
|
研究论文 | 本研究使用热成像技术和深度学习对糖尿病患者进行足部溃疡风险分层 | 结合热成像和深度学习技术进行糖尿病足部溃疡风险分类 | 样本量较小,且模型的特异性较低 | 开发一种非侵入性方法来识别糖尿病足部溃疡风险患者 | 成年糖尿病患者 | 计算机视觉 | 糖尿病 | 热成像技术 | 深度学习神经网络 | 热成像图像 | 153张热成像图像(训练集98张,测试集55张) |
7719 | 2025-02-24 |
UAS-based MT-YOLO model for detecting missed tassels in hybrid maize detasseling
2025-Feb-19, Plant methods
IF:4.7Q1
DOI:10.1186/s13007-025-01341-4
PMID:39972352
|
研究论文 | 本研究介绍了MT-YOLO模型,利用深度学习和无人机系统(UAS)来替代或辅助人工检测杂交玉米去雄过程中遗漏的雄穗 | MT-YOLO模型在检测遗漏雄穗方面表现出显著的改进,特别是在早期雄穗阶段,当雄穗部分被叶片包裹时,这是一个关键但未被充分探索的挑战 | NA | 提高杂交玉米种子生产中去雄效率 | 杂交玉米去雄过程中遗漏的雄穗 | 计算机视觉 | NA | 深度学习 | MT-YOLO | 图像 | 包含不同光照条件、种植密度和生长阶段的多样化雄穗图像数据集 |
7720 | 2025-02-24 |
Structure-Based Deep Learning Framework for Modeling Human-Gut Bacterial Protein Interactions
2025-Feb-17, Proteomes
IF:4.0Q2
DOI:10.3390/proteomes13010010
PMID:39982320
|
研究论文 | 本研究提出了一种基于深度学习的框架,利用结构数据预测人类与肠道细菌蛋白质之间的相互作用 | 该框架结合了基于图的蛋白质表示和变分自编码器(VAEs),通过双向交叉注意力模块融合结构嵌入来预测相互作用,解决了蛋白质相互作用数据集中的类别不平衡问题 | 实验数据稀疏,可能影响模型的泛化能力 | 研究人类与肠道细菌蛋白质之间的相互作用网络,以揭示其对人类健康的影响 | 人类蛋白质与肠道细菌蛋白质 | 机器学习 | NA | 深度学习 | 变分自编码器(VAEs) | 结构数据 | NA |