深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 40284 篇文献,本页显示第 7701 - 7720 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
7701 2025-11-23
Accelerated RAKI reconstruction for multi-slice cardiac cine applications
2025-Dec, Medical physics IF:3.2Q1
研究论文 本研究针对心脏电影MRI提出了一种加速的RAKI重建方法,通过优化训练策略和利用时空冗余性来减少重建时间 通过简化RAKI算法结构(移除非线性激活单元并减少层数),并仅训练特定切片和心脏时相,显著加速了重建过程 该方法仍存在与k空间优化过程直接相关的条纹伪影 优化心脏电影MRI的重建速度同时保证图像质量 心脏电影MRI数据 医学影像重建 心血管疾病 MRI, 深度学习重建 CNN 医学影像, k空间数据 10个完全采样的多切片电影数据(来自OCMR公共数据库) NA 简化版卷积神经网络(单卷积层) PSNR, NMSE, SSIM, 重建时间 NA
7702 2025-11-23
Real-time quality feedback on Doppler data for community midwives using edge-AI
2025-Dec-01, Machine Learning. Health
研究论文 本研究开发了一种基于深度学习和边缘AI的实时胎儿多普勒数据质量评估技术框架 首次将边缘AI技术集成到低成本移动系统中,与危地马拉农村地区的土著助产士共同设计,实现实时数据质量反馈 训练数据主要来自单一农村地区,测试数据量较小(仅5个录音),需要更多样化的数据验证泛化能力 通过实时质量评估改善胎儿多普勒数据收集,支持低收入地区的临床研究 胎儿多普勒信号 医疗AI 妊娠相关疾病 多普勒超声 深度神经网络 音频信号 危地马拉农村191个录音(训练验证),德国医院5个录音(测试) Android, mHealth框架 深度神经网络 F1分数, 准确率, 微平均F1, 宏平均F1 边缘计算系统, Android手机
7703 2025-11-23
DMCA-Net: Dual-branch multi-granularity hierarchical contrast and cross-attention network for cervical abnormal cell detection
2025-Dec, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 提出一种用于宫颈异常细胞检测的双分支多粒度分层对比和交叉注意力网络DMCA-Net 设计了双分支结构分别检测异常和正常细胞,引入细胞间成对交叉注意力机制和多粒度分层对比学习来增强特征学习和分类能力 NA 提高宫颈异常细胞检测的准确性 宫颈细胞图像 计算机视觉 宫颈癌 深度学习 CNN 图像 两个公开数据集 PyTorch DMCA-Net 准确率 NA
7704 2025-11-23
A novel number-theoretic sampling method for neural network solutions of partial differential equations
2025-Dec, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 提出一种基于数论确定性采样点的新型深度学习框架,用于求解低正则性或高维偏微分方程 采用数论采样点替代传统均匀随机采样,通过生成向量实现最小差异度,结合物理信息神经网络提供严格的数学误差界保证 NA 提高偏微分方程数值求解在低正则性和高维情况下的计算效率 偏微分方程的数值解 机器学习 NA 数论采样方法 PINNs 数值模拟数据 NA NA 物理信息神经网络 误差界 NA
7705 2025-11-23
Study of fractional order epidemic compartmental model by using artificial deep neural networks
2025-Dec, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 本研究使用深度神经网络分析具有分形分数阶微分方程的轮状病毒疾病仓室数学模型 将深度神经网络应用于分形分数阶流行病动力学系统研究,并采用Caputo Fabrizio意义的指数核分形分数阶导数 仅使用9个神经元和最多1000次训练周期,模型复杂度可能不足 研究轮状病毒传播动力学模型并验证深度神经网络在流行病学建模中的应用 轮状病毒引起的胃肠炎传播动力学模型 机器学习 传染病 分形分数阶微分方程,深度神经网络 DNN 数值模拟数据 NA NA 多层人工深度神经网络 回归R值,均方误差,均方根误差 NA
7706 2025-11-23
SSCLMix: A self-supervised contrastive learning-based data mixing augmentation method
2025-Dec, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 提出一种基于自监督对比学习的医学图像混合数据增强方法SSCLMix,用于提升医学图像分割模型的性能 提出基于图像结构相似度的样本分类方法,结合双编码器对比学习和交叉自注意力机制进行跨样本建模,并引入双空间特征感知残差模块保护图像边缘纹理和区域信息 计算效率处于中上水平,未达到最优计算效率 解决医学图像分割中训练数据不足和类别不平衡问题 医学图像分割任务 医学图像处理 NA 数据增强 自监督对比学习, 注意力机制 医学图像 七个医学图像分割任务的数据集 NA 双编码器对比学习, 交叉自注意力机制, 双空间特征感知残差模块 分割模型指标 NA
7707 2025-11-23
Data Augmentation Via Digital Twins to Develop Personalized Deep Learning Glucose Prediction Algorithms for Type 1 Diabetes in Poor Data Context
2025-Nov-21, IEEE transactions on bio-medical engineering
研究论文 提出利用数字孪生生成个性化合成数据的数据增强策略,以改善1型糖尿病葡萄糖预测深度学习模型的性能 首次将数字孪生技术应用于1型糖尿病数据增强,通过生成个性化合成数据解决数据稀缺问题 仅基于12名患者的开源数据集进行验证,样本规模较小 开发用于1型糖尿病葡萄糖水平预测的个性化深度学习算法 1型糖尿病患者的葡萄糖-胰岛素动态数据 机器学习 1型糖尿病 数字孪生技术,数据增强 深度神经网络 时间序列生理数据 12名患者的开源数据集 NA NA 葡萄糖预测准确度 NA
7708 2025-11-23
Leveraging Rich Mechanical Features and Long-Range Physical Constraints for Lumbar Spine Stress Analysis
2025-Nov-21, IEEE transactions on bio-medical engineering
研究论文 提出一种结合3D生成对抗网络和双通道视觉Transformer的框架,用于腰椎生物力学分析 引入物理引导机制确保模型符合力学原理,并采用数据增强和双通道架构提取几何与物理信息 数据依赖性和物理一致性仍是挑战 开发高效准确的腰椎生物力学分析方法 腰椎脊柱 计算机视觉 脊柱疾病 有限元分析,深度学习 GAN, Transformer 3D图像数据 NA NA 3D生成对抗网络,双通道视觉Transformer 交并比,均方误差 NA
7709 2025-11-23
Deep learning-based mismatch repair prediction using colorectal cancer macroscopic images: a diagnostic study
2025-Nov-21, Journal of gastroenterology IF:6.9Q1
研究论文 开发基于深度学习的大肠癌大体图像错配修复状态预测模型 首次使用大体图像结合深度学习进行错配修复状态预测,提供快速免费的筛查工具 单中心研究,样本量相对有限,需要外部验证 为结直肠癌患者提供快速、免费的错配修复状态筛查方法 809名接受手术切除的结直肠癌患者 数字病理 结直肠癌 免疫组织化学染色 深度学习 图像 809名结直肠癌患者的手术标本大体图像 NA DeepLabV3+, Vision Transformer (ViT) AUC, NPV NA
7710 2025-11-23
AttenUNeT X with iterative feedback mechanisms for robust deep learning skin lesion segmentation
2025-Nov-19, Scientific reports IF:3.8Q1
研究论文 提出一种名为AttenUNeT X的新型皮肤病变分割模型,通过集成反馈机制和注意力模块提升分割精度 在U-Net架构中引入三项关键改进:解码器块的迭代反馈机制、定制顺序统计层捕获极值病变模式、增强注意力模块聚焦诊断相关区域 NA 开发鲁棒的深度学习模型用于皮肤病变分割以改善皮肤癌早期诊断 皮肤病变图像 计算机视觉 皮肤癌 深度学习图像分割 CNN 图像 ISIC 2018数据集、PH2数据集和ISIC 2017数据集 NA U-Net, AttenUNeT X Dice系数, IoU, 像素准确率 NA
7711 2025-11-23
Deep learning twined spatial analysis for detection of mysterious fairy circles
2025-Nov-19, Scientific reports IF:3.8Q1
研究论文 本研究结合计算建模和地貌图像数据开发基于CNN的预测模型,用于从卫星图像中检测神秘仙女圈 首次将预训练CNN模型应用于全球范围内仙女圈的自动检测和定位 研究主要基于特定地区(马里、纳米比亚、澳大利亚)的数据,可能对其他地区的适用性有限 开发能够从卫星图像中自动检测仙女圈的人工智能模型 卫星图像中的仙女圈地貌特征 计算机视觉 NA 卫星遥感成像 CNN 卫星图像 NA NA 预训练CNN 准确率 NA
7712 2025-11-23
CyberDetect MLP a big data enabled optimized deep learning framework for scalable cyberattack detection in IoT environments
2025-Nov-19, Scientific reports IF:3.8Q1
研究论文 提出一个名为CyberDetect-MLP的可扩展、可解释的大数据驱动深度学习框架,用于物联网环境中的网络攻击检测 结合大数据分析与可解释深度学习,填补了网络安全领域大数据分析与可解释深度学习之间的空白,提供端到端的入侵检测系统方法 NA 开发可扩展、可解释的物联网网络攻击检测框架 物联网环境中的网络攻击检测 机器学习 NA 互信息特征选择,可解释人工智能 MLP 多维数据流,网络数据 完整TON_IoT数据集 Apache Spark, TensorFlow/PyTorch 多层感知机,包含批归一化、dropout和余弦退火调度 准确率,ROC-AUC 分布式计算框架Apache Spark
7713 2025-11-23
Coevolutionary signals in multiple sequence alignments improve virulence factor prediction with an MSA Transformer
2025-Nov-19, Scientific reports IF:3.8Q1
研究论文 提出一种基于MSA Transformer的新方法MVP,通过利用多序列比对中的共进化信号来预测细菌毒力因子 首次将共进化信息整合到毒力因子预测中,提出MSA-composition特征表示方法 未明确说明模型在哪些类型的毒力因子预测上表现较差 改进细菌毒力因子的预测准确性 细菌毒力因子相关蛋白序列 生物信息学 细菌感染性疾病 多序列比对,深度学习 Transformer 蛋白质序列数据 NA PyTorch MSA Transformer 准确率 NA
7714 2025-11-23
Electrolyzers-HSI: Close-Range Multi-Scene Hyperspectral Imaging Benchmark Dataset
2025-Nov-19, Scientific data IF:5.8Q1
研究论文 介绍了一个用于电解器材料分类的多模态高光谱成像基准数据集Electrolyzers-HSI 首个专门针对电解器关键原材料回收的多模态高光谱成像基准数据集,包含共配准的RGB图像和HSI数据立方体 数据集规模相对较小,仅包含55个样本 通过准确的电解器材料分类加速关键原材料回收 粉碎的电解器样本 计算机视觉 NA 高光谱成像(HSI) Transformer 图像, 高光谱数据 55个共配准的高分辨率RGB图像和HSI数据立方体 NA Transformer NA NA
7715 2025-11-23
Automated hypoxia and apnea identification for neonates via enhanced respiratory signal modeling with deep learning
2025-Nov-19, Scientific reports IF:3.8Q1
研究论文 通过深度学习增强呼吸信号建模实现新生儿缺氧和呼吸暂停的自动识别 提出合成信号生成框架模拟婴儿呼吸周期,结合CNN-BiLSTM混合模型实现呼吸状态分类 使用合成数据而非真实临床数据,缺乏临床验证 开发基于机器学习的 neonatal 呼吸窘迫评估系统 新生儿呼吸模式 机器学习 新生儿呼吸系统疾病 合成信号生成,特征提取 CNN, BiLSTM, Random Forest 合成呼吸信号 NA NA CNN-BiLSTM 准确率 NA
7716 2025-11-23
Multimodal fusion of ultrasound images using HXM net for breast cancer diagnosis
2025-Nov-19, Scientific reports IF:3.8Q1
研究论文 提出HXM-Net深度学习模型,通过融合B超和多普勒超声图像提升乳腺癌诊断准确率 结合CNN空间特征提取与Transformer融合机制,实现双模态超声图像的协同分析 NA 提高乳腺癌检测的准确性和早期诊断能力 乳腺病灶的形态学和血管特征 计算机视觉 乳腺癌 超声成像 CNN, Transformer 图像 类别平衡的乳腺超声数据库 NA HXM-Net 准确率, 敏感度(召回率), 特异性, F1分数, AUC-ROC NA
7717 2025-11-23
Cross-platform multi-cancer histopathology classification using local-window vision transformers
2025-Nov-19, Scientific reports IF:3.8Q1
研究论文 提出CancerDet-Net框架,用于跨平台多癌种组织病理学图像分类 集成可分离卷积层、局部窗口视觉Transformer块和分层多尺度门控注意力机制,通过跨尺度特征融合实现多癌种分类,并提供可解释AI可视化和临床部署 未明确说明模型在不同数据集间的泛化能力具体测试结果 开发能够准确分类多种癌症组织病理学图像的AI系统 九种组织病理学亚型,涵盖四种主要癌症类型 数字病理学 多癌种(肺癌、结肠癌、皮肤癌、乳腺癌) 组织病理学图像分析 Vision Transformer (ViT), CNN 组织病理学图像 NA NA Vision Transformer with local-window self-attention, 可分离卷积, 分层多尺度门控注意力机制 准确率 NA
7718 2025-11-23
TS-SatFire: A Multi-Task Satellite Image Time-Series Dataset for Wildfire Detection and Prediction
2025-Nov-19, Scientific data IF:5.8Q1
研究论文 提出一个用于野火检测和预测的多任务卫星图像时间序列数据集 首个涵盖野火生命周期完整监测任务的多时相遥感数据集,包含主动火点检测、日尺度燃烧面积制图和火势进展预测三大任务 数据集仅覆盖美国本土2017-2021年的野火事件,时间跨度和地理范围有限 通过多任务深度学习模型提升野火监测和预测能力 美国本土野火事件及其相关环境数据 计算机视觉 NA 多时相遥感成像,多光谱数据分析 深度学习模型 卫星图像,多模态辅助数据(气象、地形、土地覆盖、燃料信息) 3552幅地表反射率图像,总计71GB数据 NA NA NA NA
7719 2025-11-23
Causal deep learning for enhancing explainability in 6G network edge intelligence anomaly detection
2025-Nov-19, Scientific reports IF:3.8Q1
研究论文 提出一种结合因果推断与LSTM网络的新框架,用于提升6G网络边缘智能异常检测的可解释性 首次将因果推断与LSTM网络集成,通过随机傅里叶特征变换消除非线性特征相关性,并使用生成对抗网络增强少数类样本 未明确说明模型在更复杂网络环境下的泛化能力 提升6G网络边缘智能异常检测系统的可解释性和可信度 6G网络边缘智能系统中的异常检测 机器学习 NA 随机傅里叶特征变换,生成对抗网络 LSTM, GAN 网络数据 两个大规模数据集 NA LSTM, GAN 可解释性提升指标,根因定位时间 NA
7720 2025-11-23
Dataset creation and benchmarking for Kashmiri news snippet classification using fine-tuned transformer and LLM models in a low resource setting
2025-Nov-19, Scientific reports IF:3.8Q1
研究论文 本研究创建了克什米尔语新闻片段分类数据集,并在低资源环境下对多种模型进行基准测试 创建了首个手工标注的克什米尔语新闻片段数据集,并探索了在低资源语言环境下最优的文本分类方法组合 数据集通过英语新闻翻译创建,可能存在翻译偏差;样本量相对有限(15,036个片段) 解决克什米尔语在自然语言处理中的资源匮乏问题,建立有效的新闻片段分类方法 克什米尔语新闻片段文本数据 自然语言处理 NA 机器翻译(Microsoft Bing翻译工具),文本分类 Transformer, LLM, 机器学习模型, 深度学习模型 文本 15,036个新闻片段,涵盖10个类别(医疗、政治、体育、旅游、教育、艺术工艺、环境、娱乐、技术、文化) NA ParsBERT-Uncased F1分数 NA
回到顶部