本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7721 | 2025-02-24 |
Advancing Privacy-Preserving Health Care Analytics and Implementation of the Personal Health Train: Federated Deep Learning Study
2025-Feb-06, JMIR AI
DOI:10.2196/60847
PMID:39912580
|
研究论文 | 本文介绍了一种名为Personal Health Train(PHT)的创新联邦学习基础设施,用于在保护数据隐私的同时进行医疗数据分析,并应用于肺癌患者的胸部CT图像中的肿瘤体积分割 | 提出了PHT框架,结合了安全聚合服务器,确保在联邦学习过程中数据不离开医院,解决了数据隐私问题 | 虽然展示了概念验证的可行性,但实际大规模应用仍需进一步验证其性能和稳定性 | 开发并验证一种能够在保护数据隐私的前提下,实现跨机构协作的联邦深度学习基础设施 | 肺癌患者的胸部CT图像 | 数字病理 | 肺癌 | 联邦学习(FL) | 深度学习神经网络 | 图像 | 12家医院,覆盖8个国家,4大洲 |
7722 | 2025-02-24 |
Deep Learning Model for Predicting Immunotherapy Response in Advanced Non-Small Cell Lung Cancer
2025-Feb-01, JAMA oncology
IF:22.5Q1
DOI:10.1001/jamaoncol.2024.5356
PMID:39724105
|
研究论文 | 本文开发了一种基于深度学习的模型,用于预测晚期非小细胞肺癌(NSCLC)患者对免疫检查点抑制剂(ICI)治疗的反应 | 该研究首次使用深度学习模型从全切片H&E染色图像中预测ICI治疗反应,并在多个队列中验证了其独立预测能力 | 研究样本主要来自美国和欧洲,可能限制了模型的普遍适用性 | 开发并验证一种深度学习模型,用于预测晚期NSCLC患者对ICI治疗的反应 | 晚期非小细胞肺癌患者 | 数字病理学 | 肺癌 | 深度学习 | 深度学习模型 | 图像 | 958名患者(456名女性,502名男性),共295,581张图像切片 |
7723 | 2025-02-24 |
Analysis of TEM micrographs with deep learning reveals APOE genotype-specific associations between HDL particle diameter and Alzheimer's dementia
2025-Jan-27, Cell reports methods
IF:4.3Q2
DOI:10.1016/j.crmeth.2024.100962
PMID:39874947
|
研究论文 | 本文利用深度学习模型YOLOv7分析了183个HDL样本的透射电子显微镜(TEM)图像,测量了超过1,800,000个HDL颗粒的直径,揭示了APOE基因型与阿尔茨海默病痴呆之间的关联 | 使用深度学习模型YOLOv7从TEM图像中高效准确地测量HDL颗粒直径,并发现APOE基因型与HDL颗粒直径分布之间的特异性关联 | 研究样本量相对较小(183个样本),且仅关注了APOE基因型的两种变异(ε3ε4和ε3ε3) | 探索HDL颗粒直径分布与阿尔茨海默病痴呆之间的关联,并验证深度学习在HDL颗粒直径测量中的应用 | 183个HDL样本,包括痴呆患者和正常认知的对照组 | 计算机视觉 | 阿尔茨海默病 | 透射电子显微镜(TEM)成像 | YOLOv7 | 图像 | 183个HDL样本,超过1,800,000个HDL颗粒 |
7724 | 2025-02-24 |
TimeFlies: an snRNA-seq aging clock for the fruit fly head sheds light on sex-biased aging
2025-Jan-25, bioRxiv : the preprint server for biology
DOI:10.1101/2024.11.25.625273
PMID:39896546
|
研究论文 | 本文介绍了TimeFlies,一种基于单细胞RNA测序的果蝇头部衰老时钟,揭示了性别差异在衰老过程中的作用 | TimeFlies是首个基于全基因组基因表达谱的泛细胞类型单细胞RNA测序衰老时钟,能够识别关键标记基因,并揭示了性别特异性衰老路径的差异 | 该研究主要局限于果蝇头部,尚未在其他生物体或组织中验证其普适性 | 开发一种基于单细胞RNA测序的衰老时钟,以研究果蝇头部衰老过程中的性别差异 | 果蝇头部细胞 | 生物信息学 | 衰老 | 单细胞RNA测序(scRNA-seq) | 深度学习 | 基因表达数据 | NA |
7725 | 2025-02-24 |
"Sadness smile" curve: Processing emotional information from social network for evaluating thermal comfort perception
2025-Jan, Journal of thermal biology
IF:2.9Q1
DOI:10.1016/j.jtherbio.2024.104025
PMID:39689668
|
研究论文 | 本研究通过分析社交媒体上的面部表情数据,评估热舒适感知,并提出了一种基于深度学习的方法来预测热舒适度 | 提出了‘悲伤微笑’曲线,通过分析面部表情中的悲伤分数来预测最舒适温度,并利用ResNet模型进行情感基热舒适感知的预测 | 研究依赖于社交媒体数据,可能存在数据偏差,且未考虑其他可能影响热舒适感知的因素 | 评估和预测人类在不同热环境下的热舒适感知 | 社交媒体上的面部表情数据 | 计算机视觉 | NA | 深度学习 | ResNet | 图像 | 8314张面部照片,来自49个城市的82个公园的志愿者 |
7726 | 2025-02-24 |
Utilizing retinal arteriole/venule ratio to estimate intracranial pressure
2024-Nov-08, Acta neurochirurgica
IF:1.9Q2
DOI:10.1007/s00701-024-06343-0
PMID:39514087
|
研究论文 | 本研究探讨了利用视网膜动静脉比率(A/V比率)无创估计颅内压(ICP)的可行性,并加入了眼内压(IOP)的考量 | 首次在神经重症监护病房(NICU)环境中,结合眼内压(IOP)使用深度学习算法分析眼底镜检查视频,以无创方式估计颅内压(ICP) | 图像质量和诊断特异性仍存在挑战,需要更大规模的多中心研究来验证该技术的临床适用性 | 研究无创估计颅内压(ICP)的方法,以减少侵入性测量带来的风险 | 神经重症监护病房(NICU)中的成年患者,格拉斯哥昏迷评分(GCS)≤8分,并接受侵入性压力监测 | 数字病理学 | 脑损伤 | 深度学习算法 | 混合效应线性回归模型 | 视频 | 40名患者,其中15名纳入最终分析 |
7727 | 2025-02-24 |
A DEEP LEARNING FRAMEWORK TO CHARACTERIZE NOISY LABELS IN EPILEPTOGENIC ZONE LOCALIZATION USING FUNCTIONAL CONNECTIVITY
2024-May, Proceedings. IEEE International Symposium on Biomedical Imaging
DOI:10.1109/isbi56570.2024.10635583
PMID:39464200
|
研究论文 | 本文开发了一个深度学习框架,用于在药物难治性局灶性癫痫患者的静息态功能磁共振成像(rs-fMRI)中定位致痫区(EZ),并处理训练和测试中的噪声标签问题 | 提出了一个多任务深度学习框架,能够同时识别噪声标签的概率和每个感兴趣区域(ROI)的定位预测 | 由于临床协议的限制,具有可靠EZ标签的数据集稀缺,且使用的标签可能包含噪声 | 开发一个数学框架来表征EZ定位中的噪声标签,并提高定位性能 | 药物难治性局灶性癫痫患者 | 数字病理学 | 癫痫 | rs-fMRI | 多任务深度学习框架 | 图像 | 模拟数据集(来自人类连接组计划)和临床癫痫数据集 |
7728 | 2025-02-24 |
High Resolution Multi-delay Arterial Spin Labeling with Transformer based Denoising for Pediatric Perfusion MRI
2024-Mar-06, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.03.04.24303727
PMID:38496517
|
研究论文 | 本文介绍了一种高分辨率多延迟动脉自旋标记(MDASL)协议,并提出了基于Transformer的深度学习模型,用于儿科灌注MRI的去噪 | 提出了基于Transformer的深度学习模型,结合k空间加权图像平均(KWIA)去噪图像作为参考,有效提高了多延迟ASL图像的信噪比(SNR)和测试-重测重复性 | 研究样本仅限于8至17岁的典型发育儿童,未涵盖其他年龄段或特殊发育情况的儿童 | 提高儿科灌注MRI中多延迟动脉自旋标记(MDASL)图像的质量和重复性 | 21名8至17岁的典型发育儿童 | 医学影像 | NA | 多延迟动脉自旋标记(MDASL),k空间加权图像平均(KWIA) | Transformer | MRI图像 | 21名8至17岁的典型发育儿童 |
7729 | 2025-02-24 |
NnU-Net versus mesh growing algorithm as a tool for the robust and timely segmentation of neurosurgical 3D images in contrast-enhanced T1 MRI scans
2024-Feb-20, Acta neurochirurgica
IF:1.9Q2
DOI:10.1007/s00701-024-05973-8
PMID:38376564
|
研究论文 | 本研究评估了nnU-Net在对比增强T1(T1CE)图像中分割大脑、皮肤、肿瘤和脑室的性能,并与现有的网格生长算法(MGA)进行了对比 | nnU-Net在分割大脑、皮肤、肿瘤和脑室方面显著优于MGA,且速度更快,减少了手动调整和迭代的需求 | 训练集规模较小,可能影响模型的泛化能力 | 评估nnU-Net在神经外科3D图像分割中的性能 | 对比增强T1(T1CE)图像中的大脑、皮肤、肿瘤和脑室 | 计算机视觉 | 神经外科疾病 | 对比增强T1 MRI扫描 | nnU-Net | 3D图像 | 67个用于训练的T1CE脑部扫描和32个用于测试的扫描 |
7730 | 2025-02-24 |
Applied deep learning in neurosurgery: identifying cerebrospinal fluid (CSF) shunt systems in hydrocephalus patients
2024-Feb-07, Acta neurochirurgica
IF:1.9Q2
DOI:10.1007/s00701-024-05940-3
PMID:38321344
|
研究论文 | 本研究评估了AI辅助的脑脊液分流阀检测系统在神经外科中的可行性 | 使用深度学习模型自动识别X射线或CT图像中的不同分流阀模型,提高识别速度和准确性 | 数据集仅包含2070张图像,可能不足以涵盖所有分流阀类型 | 评估AI辅助分流阀检测系统在神经外科中的可行性 | 脑脊液分流阀 | 计算机视觉 | 脑积水 | 深度学习 | CNN | 图像 | 2070张X射线或CT图像,涵盖10种不同的分流阀类型 |
7731 | 2025-02-24 |
Deep learning performance on MRI prostate gland segmentation: evaluation of two commercially available algorithms compared with an expert radiologist
2024-Jan, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.11.1.015002
PMID:38404754
|
研究论文 | 本研究评估了两种商用深度学习算法在MRI前列腺分割中的表现,并与专家放射科医生的手动分割进行了比较 | 在真实临床环境中评估商用AI模型的前列腺分割性能,填补了现有研究的空白 | 未对深度学习算法进行内部训练,且样本量相对较小 | 验证商用AI模型在前列腺分割中的准确性和临床应用价值 | 123名患者的多中心、多扫描仪MRI数据集 | 数字病理学 | 前列腺癌 | 深度学习算法 | 深度学习算法(DLA1和DLA2) | MRI图像 | 123名患者 |
7732 | 2025-02-23 |
QuantumNet: An enhanced diabetic retinopathy detection model using classical deep learning-quantum transfer learning
2025-Jun, MethodsX
IF:1.6Q2
DOI:10.1016/j.mex.2025.103185
PMID:39981059
|
研究论文 | 本文介绍了一种名为QuantumNet的混合模型,结合了经典深度学习和量子迁移学习,用于增强糖尿病视网膜病变(DR)的检测 | QuantumNet结合了经典深度学习模型和量子计算的优势,通过量子迁移学习提高了DR检测的准确性和资源效率 | NA | 提高糖尿病视网膜病变的检测准确性和效率 | 糖尿病视网膜病变(DR) | 医学影像 | 糖尿病视网膜病变 | 量子迁移学习 | CNN, ResNet50, MobileNetV2, 变分量子分类器 | 图像 | APTOS 2019 blindness detection dataset on Kaggle |
7733 | 2025-02-23 |
Combination of deep learning reconstruction and quantification for dynamic contrast-enhanced (DCE) MRI
2025-Apr, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2024.110310
PMID:39710009
|
研究论文 | 本研究提出了一种结合深度学习重建和量化的动态对比增强(DCE)MRI技术,旨在提高DCE-MRI的临床应用 | 提出了一种名为DCE-Movienet的新型深度重建网络,与之前开发的DCE-Qnet深度量化网络结合,实现了快速且定量的DCE-MRI | 研究仅在健康志愿者和一名宫颈癌患者中进行了验证,样本量较小 | 提高DCE-MRI在临床中的速度和量化鲁棒性 | 健康志愿者和宫颈癌患者 | 医学影像 | 宫颈癌 | 动态对比增强(DCE)MRI | DCE-Movienet, DCE-Qnet | 4D MRI数据 | 健康志愿者和一名宫颈癌患者 |
7734 | 2025-02-23 |
Performance and efficiency of machine learning models in analyzing capillary serum protein electrophoresis
2025-Mar-01, Clinica chimica acta; international journal of clinical chemistry
DOI:10.1016/j.cca.2025.120165
PMID:39875052
|
研究论文 | 本文研究了机器学习模型在分析毛细血管血清蛋白电泳(SPEP)中的性能和效率,旨在通过人工智能模型提高M蛋白的分类和定位准确性 | 本文创新性地将U-Net与Transformer模型结合,用于M蛋白的分类和定位,展示了与临床专家相当的性能 | 研究依赖于单一数据集,且未探讨模型在其他类型疾病中的应用 | 开发人工智能诊断模型,以提高SPEP在M蛋白相关疾病诊断中的准确性和效率 | 毛细血管血清蛋白电泳(SPEP)数据 | 机器学习 | M蛋白相关疾病 | 血清蛋白电泳(SPEP) | XGB, U-Net, Transformer | 电泳数据 | 85,026个SPEP结果用于训练和验证,1,079个样本用于测试 |
7735 | 2025-02-23 |
Lightweight visual localization algorithm for UAVs
2025-Feb-19, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-88089-y
PMID:39971988
|
研究论文 | 本文介绍了一种名为Lightv8nPnP的轻量级视觉定位算法模型,旨在使基于深度学习的无人机视觉定位算法更加轻量化 | 引入了GhostConv构建GDetect检测头模块,采用Wise-IoU作为边界框回归损失函数,并基于无人机航空数据集样本特性修改YOLOv8n网络结构,创建了TrimYOLO网络结构 | 未提及具体的数据集规模或多样性限制 | 开发一种高效的视觉定位算法模型,以实现无人机的精确三维定位 | 无人机 | 计算机视觉 | NA | 深度学习 | YOLOv8n, TrimYOLO | 图像 | 未提及具体样本数量 |
7736 | 2025-02-23 |
Assessment of hydrological loading displacement from GNSS and GRACE data using deep learning algorithms
2025-Feb-19, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-90363-y
PMID:39972111
|
研究论文 | 本文介绍了一种使用3D卷积神经网络(3D-CNN)估算水文负荷位移的新方法 | 使用3D-CNN方法显著提高了水文负荷位移的反演精度,相比传统的负荷格林函数反演技术,最大偏差减少了1.34毫米,绝对最小偏差减少了1.47毫米,绝对平均偏差减少了79.6%,标准偏差减少了31.4% | 研究仅限于中国云南省及其邻近地区的41个GNSS站点的数据,可能不适用于其他地区 | 精确评估陆地水负荷位移(TWLD)对大地测量观测和高精度动态参考框架的建立和维护的影响 | 云南省及其邻近地区的41个GNSS站点的垂直位移时间序列数据 | 机器学习 | NA | 3D卷积神经网络(3D-CNN) | 3D-CNN | 时间序列数据 | 41个GNSS站点的数据 |
7737 | 2025-02-23 |
Genetic insights into the shared molecular mechanisms of Crohn's disease and breast cancer: a Mendelian randomization and deep learning approach
2025-Feb-18, Discover oncology
IF:2.8Q2
DOI:10.1007/s12672-025-01978-6
PMID:39964572
|
研究论文 | 本研究旨在探索克罗恩病与乳腺癌之间的潜在遗传联系,重点关注可能具有治疗相关性的可药物基因 | 结合孟德尔随机化和深度学习方法来研究两种疾病之间的遗传联系,并预测基因-药物相互作用 | 研究结果仅为初步发现,需要进一步实验验证 | 探索克罗恩病与乳腺癌之间的遗传联系,识别可能的治疗靶点 | 克罗恩病和乳腺癌的遗传数据 | 机器学习 | 克罗恩病, 乳腺癌 | 孟德尔随机化, 深度学习 | 深度学习 | 单核苷酸多态性(SNP) | NA |
7738 | 2025-02-23 |
Integrating D-S evidence theory and multiple deep learning frameworks for time series prediction of air quality
2025-Feb-18, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-87935-3
PMID:39966417
|
研究论文 | 本研究提出了一种结合D-S证据理论和多种深度学习模型的时间序列预测框架,用于提高空气质量预测的准确性和鲁棒性 | 结合D-S证据理论和多种深度学习模型,通过融合多个模型的预测结果和可靠性,提高了长期空气质量预测的准确性 | 研究仅基于中国三个具有气候特征的城市的数据,可能无法完全代表其他地区的空气质量预测情况 | 提高空气质量时间序列数据的预测准确性,以提前识别和预警空气污染事件 | 中国三个具有气候特征的城市 | 机器学习 | NA | D-S证据理论 | MLP, RNN, CNN, LSTM, BI-LSTM, GRU | 时间序列数据 | 三个城市的空气质量数据,包含五种空气污染物指标 |
7739 | 2025-02-23 |
Research on variable-length control chart pattern recognition based on sliding window method and SECNN-BiLSTM
2025-Feb-18, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-86849-4
PMID:39966459
|
研究论文 | 本文提出了一种基于滑动窗口方法和SE-attention CNN与Bi-LSTM(SECNN-BiLSTM)的可变长度控制图识别方法 | 结合滑动窗口方法和SE-attention CNN与Bi-LSTM,提出了一种新的可变长度控制图识别方法 | 未提及具体局限性 | 提高可变长度控制图的识别效率和准确性 | 可变长度控制图 | 机器学习 | NA | 滑动窗口方法、SE-attention CNN、Bi-LSTM | CNN、LSTM | 一维和二维矩阵数据 | 未提及具体样本数量 |
7740 | 2025-02-23 |
Jointly exploring client drift and catastrophic forgetting in dynamic learning
2025-Feb-18, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-89873-6
PMID:39966528
|
研究论文 | 本文提出了一个统一的分析框架,用于联合建模空间和时间偏移,以更接近真实动态环境的模拟 | 首次联合分析客户端漂移和灾难性遗忘,提出了一种统一的分析框架,并发现适度的空间和时间偏移组合可以提高模型性能 | 未提及具体的数据集或实验规模,可能缺乏广泛的验证 | 研究在动态环境中联合解决客户端漂移和灾难性遗忘问题,以提高深度学习模型的鲁棒性 | 联邦学习和持续学习中的模型性能 | 机器学习 | NA | 深度学习 | NA | NA | NA |