深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24902 篇文献,本页显示第 7741 - 7760 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
7741 2025-02-23
Developing a semi-automated technique of surface water quality analysis using GEE and machine learning: A case study for Sundarbans
2025-Feb-15, Heliyon IF:3.4Q1
研究论文 本研究提出了一种半自动化的方法,利用机器学习模型结合现场和遥感数据评估孙德尔本斯的水质 结合Google Earth Engine (GEE)和AutoML,利用深度学习库创建动态、自适应模型,提高预测精度 数据可用性的可变性以及机器学习预测动态水系统时固有的不确定性 开发一种半自动化的水质分析技术,以支持可持续环境管理实践和孙德尔本斯应对新兴气候挑战的韧性 孙德尔本斯的水质参数(海表温度、总悬浮固体、浊度、盐度和pH值) 机器学习 NA 机器学习算法、Empirical Bayesian Kriging (EBK)模型、Google Earth Engine (GEE)、AutoML 深度学习模型 现场数据和遥感数据 NA
7742 2025-02-23
Mentorship advances antimicrobial use surveillance systems in low- and middle-income countries
2025-Feb, JAC-antimicrobial resistance IF:3.7Q2
研究论文 本文探讨了在低收入和中等收入国家(LMICs)中,通过导师制培训方法来推进抗菌药物使用(AMU)监测系统的实施 提出了导师制作为一种有效的培训方法,以解决LMICs中AMU监测系统实施中的人员短缺问题 研究主要基于尼泊尔、巴基斯坦、巴布亚新几内亚和东帝汶的经验,可能不适用于所有LMICs 探讨导师制在LMICs中AMU监测系统实施中的有效性 低收入和中等收入国家的AMU专业人员 公共卫生 NA 导师制培训 NA NA 2019年至2023年间在尼泊尔、巴基斯坦、巴布亚新几内亚和东帝汶进行的1至2年导师制项目
7743 2025-01-30
Author Correction: AIVariant: a deep learning-based somatic variant detector for highly contaminated tumor samples
2025-Feb, Experimental & molecular medicine
NA NA NA NA NA NA NA NA NA NA NA NA
7744 2025-02-23
Virtual staining from bright-field microscopy for label-free quantitative analysis of plant cell structures
2025-Jan-31, Plant molecular biology IF:3.9Q1
研究论文 本文探讨了使用深度学习模型对植物细胞结构进行虚拟染色的适用性,基于明场显微镜图像 提出了一种基于深度学习的虚拟染色方法,能够非侵入性地分析植物细胞结构,并应用于细胞形态计量学 该方法仍存在一些局限性,但非侵入性和高效性使其适用于定量植物细胞生物学中的无标记、动态和高通量分析 研究深度学习模型在植物细胞结构虚拟染色中的适用性 烟草BY-2细胞、拟南芥表皮细胞、Egeria densa叶绿体 计算机视觉 NA 深度学习 CNN 显微镜图像 烟草BY-2细胞、拟南芥表皮细胞、Egeria densa叶绿体
7745 2025-02-23
KaMLs for Predicting Protein pK a Values and Ionization States: Are Trees All You Need?
2025-Jan-30, bioRxiv : the preprint server for biology
研究论文 本文介绍了基于决策树和图注意力网络(GAT)的pKa预测模型KaML,利用物理化学理解和新的实验数据库PKAD-3,显著提高了蛋白质电离状态的预测准确性 KaML模型通过创新方法如酸和碱的分别处理、使用AlphaFold结构进行数据增强、在理论pKa数据库上进行模型预训练,显著提升了预测性能,特别是在去质子化半胱氨酸和赖氨酸的预测上 尽管KaML模型在预测pKa值和电离状态方面表现出色,但其性能可能仍受限于实验数据的稀缺性 提高蛋白质电离状态的预测准确性,以促进生物学理解和计算机辅助药物发现 蛋白质的电离状态 机器学习 NA 决策树、图注意力网络(GAT) KaML-CBtree、GAT 实验数据、理论pKa数据库 NA
7746 2025-02-23
EPISeg: Automated segmentation of the spinal cord on echo planar images using open-access multi-center data
2025-Jan-27, bioRxiv : the preprint server for biology
研究论文 本文介绍了一种名为EPISeg的深度学习模型,用于在梯度回波平面成像(EPI)数据上自动分割脊髓 EPISeg模型在脊髓分割质量上显著优于现有模型,并且对不同的采集协议和fMRI数据中常见的伪影具有鲁棒性 尽管EPISeg在分割质量上有显著提升,但仍需进一步验证其在更广泛数据集上的性能 开发一种自动分割脊髓的深度学习模型,以减少手动分割的时间和用户偏差 脊髓的梯度回波EPI图像 医学影像分析 NA 深度学习 深度学习模型 图像 多中心数据集,具体样本数量未明确说明
7747 2025-02-23
RNAbpFlow: Base pair-augmented SE(3)-flow matching for conditional RNA 3D structure generation
2025-Jan-26, bioRxiv : the preprint server for biology
研究论文 本文介绍了RNAbpFlow,一种基于序列和碱基对条件的SE(3)-等变流匹配模型,用于生成RNA的三维结构集合 RNAbpFlow利用核碱基中心表示法,无需显式或隐式使用进化信息或同源结构模板,即可端到端生成全原子RNA结构 由于RNA分子的高度灵活性以及进化序列或结构同源性的有限可用性,预测准确的RNA三维结构仍然具有挑战性 开发一种新的方法来预测RNA的三维结构 RNA的三维结构 生物信息学 NA SE(3)-等变流匹配模型 RNAbpFlow RNA序列和碱基对信息 大规模基准测试中的RNA拓扑采样和预测建模
7748 2025-02-23
Cell-APP: A generalizable method for microscopic cell annotation, segmentation, and classification
2025-Jan-24, bioRxiv : the preprint server for biology
研究论文 本文提出了一种通用的方法,用于在透射光显微镜图像中生成大规模实例分割训练数据集,并训练基于视觉变换器(ViT)的Mask-RCNN模型,以实现细胞的实例分割和分类 提出了一种通用的方法,用于生成大规模实例分割训练数据集,并利用视觉变换器(ViT)改进Mask-RCNN模型,解决了细胞分类中的类别不平衡问题 该方法依赖于通用的细胞特征,可能无法适用于所有类型的细胞 开发一种通用的方法,用于细胞的实例分割和分类 组织培养细胞 计算机视觉 NA 透射光显微镜 Mask-RCNN, 视觉变换器(ViT) 图像 NA
7749 2025-02-23
CPI-Pred: A deep learning framework for predicting functional parameters of compound-protein interactions
2025-Jan-21, bioRxiv : the preprint server for biology
研究论文 本文介绍了一个名为CPI-Pred的深度学习框架,用于预测化合物-蛋白质相互作用的功能参数 CPI-Pred结合了来自新型消息传递神经网络的化合物表示和由最先进的蛋白质语言模型生成的酶表示,利用创新的序列池化和交叉注意力机制 由于化合物-蛋白质相互作用的复杂性以及可用数据的稀疏性和异质性,预测这些相互作用仍然具有挑战性 研究目的是预测化合物-蛋白质相互作用的功能参数,以解决代谢工程中的一系列挑战 研究对象是化合物-蛋白质相互作用的功能参数,包括米氏常数、酶转换数、催化效率和抑制常数 机器学习 NA 深度学习 消息传递神经网络和蛋白质语言模型 氨基酸序列和化合物结构表示 迄今为止最大的酶动力学参数数据集,涵盖四个关键指标
7750 2025-02-23
Piscis: a novel loss estimator of the F1 score enables accurate spot detection in fluorescence microscopy images via deep learning
2025-Jan-15, bioRxiv : the preprint server for biology
研究论文 本文介绍了一种名为Piscis的全自动深度学习算法,用于荧光显微镜图像中的斑点检测,采用了一种新的损失函数SmoothF1 loss 提出了SmoothF1损失函数,该函数近似F1分数,直接惩罚假阳性和假阴性,同时保持可微分性,适用于深度学习训练 NA 开发一种无需手动参数调整的高通量RNA FISH成像数据分析方法 荧光显微镜图像中的斑点检测 计算机视觉 NA RNA FISH 深度学习 图像 358张手动注释的实验RNA FISH图像和240张合成图像
7751 2025-02-23
G2PDeep-v2: a web-based deep-learning framework for phenotype prediction and biomarker discovery for all organisms using multi-omics data
2025-Jan-09, Research square
研究论文 G2PDeep-v2是一个基于深度学习的网络平台,用于从多组学数据中进行表型预测和标记物发现,适用于包括人类、植物、动物和病毒在内的所有生物 提供了一个交互式界面,允许研究人员创建深度学习模型,并利用高性能计算资源通过自动超参数调整算法进行训练 未提及具体的技术限制或数据限制 开发一个通用的表型预测和生物标志物发现平台,适用于所有生物 人类、植物、动物和病毒 机器学习 NA 深度学习 深度学习模型 多组学数据 NA
7752 2025-02-23
Multi-site, multi-vendor development and validation of a deep learning model for liver stiffness prediction using abdominal biparametric MRI
2025-Jan-09, European radiology IF:4.7Q1
研究论文 本文开发并验证了使用腹部双参数MRI数据预测肝脏硬度的深度学习模型 首次在多机构、多厂商的数据集上开发和验证了用于预测肝脏硬度的深度学习模型,并公开了模型代码 模型性能仍有提升空间,可能需要结合临床特征进一步优化 开发并验证用于预测MRE衍生肝脏硬度的深度学习模型 成人和儿童慢性肝病患者 数字病理学 慢性肝病 MRI 深度学习模型 图像 4295名患者的4695次MRI检查
7753 2025-02-23
Deep learning in gonarthrosis classification: a comparative study of model architectures and single vs. multi-model methods
2025, Frontiers in artificial intelligence IF:3.0Q2
研究论文 本研究通过比较单一模型和多模型深度学习方法,使用膝关节前后位X光片对Kellgren-Lawrence(KL)骨关节炎阶段进行分类 提出了多模型深度学习方法,并与传统单一模型方法进行比较,探讨了CLAHE对分类性能的影响 未探索集成建模和高级增强技术,缺乏临床验证 比较单一模型和多模型深度学习方法在KL骨关节炎阶段分类中的效果 膝关节前后位X光片 计算机视觉 骨关节炎 深度学习 CNN(包括NfNet-F0/F1, EfficientNet-B0/B3, Inception-ResNet-v2, VGG16) 图像 14,607张来自三家医院的膝关节前后位X光片
7754 2025-02-23
Research trends in livestock facial identification: a review
2025-Jan, Journal of animal science and technology IF:2.7Q1
综述 本文综述了视频处理和基于卷积神经网络(CNN)的深度学习在动物面部识别、个体识别和再识别中的应用 通过整合视频处理和基于CNN的深度学习,实现了对动物生长、个体识别和行为的自动化监测,提升了畜牧管理系统的效率 NA 探讨视频处理和深度学习技术在精准畜牧业中的应用,以提高生产效率、动物福利和环境可持续性 牲畜 计算机视觉 NA 视频处理, 深度学习 CNN 视频 NA
7755 2025-02-23
Research progress of MRI-based radiomics in hepatocellular carcinoma
2025, Frontiers in oncology IF:3.5Q2
综述 本文综述了基于MRI的放射组学在肝细胞癌(HCC)诊断和治疗中的临床进展 本文系统评估了MRI放射组学在HCC管理中的多方面应用,包括肿瘤分化、亚型分类、病理分级、微血管侵犯预测、治疗反应评估、早期复发预测和转移预测 当前放射组学领域缺乏可解释性,需要进一步的研究和验证 评估放射组学方法并描述基于MRI的放射组学在肝细胞癌诊断和治疗中的临床进展 肝细胞癌(HCC) 数字病理 肝癌 MRI放射组学 机器学习和深度学习 影像数据 93篇文献的综合分析
7756 2025-02-23
A pelvis MR transformer-based deep learning model for predicting lung metastases risk in patients with rectal cancer
2025, Frontiers in oncology IF:3.5Q2
研究论文 本研究开发并验证了一种基于骨盆MR图像和临床特征的transformer深度学习模型,用于预测直肠癌患者的肺转移风险 首次将transformer深度学习模型应用于直肠癌肺转移的预测,结合了骨盆MR图像和临床特征,展示了优于现有深度学习方法的预测性能 研究样本量相对有限,且仅基于单一医疗中心的数据,可能影响模型的泛化能力 开发并验证一种基于骨盆MR图像和临床特征的深度学习模型,用于预测直肠癌患者的肺转移风险 819名经组织学确认的直肠癌患者,这些患者接受了术前骨盆MRI和CEA测试 数字病理 直肠癌 磁共振成像(MRI) transformer-based深度学习模型 图像(骨盆MR图像) 819名直肠癌患者
7757 2025-02-23
Machine learning-based myocardial infarction bibliometric analysis
2025, Frontiers in medicine IF:3.1Q1
研究论文 本研究分析了2008年至2024年间机器学习在心肌梗死领域的研究趋势,旨在识别该领域的新兴趋势和热点,为未来的研究方向提供见解 首次对机器学习在心肌梗死领域的研究趋势进行全面的文献计量分析,揭示了深度学习在该领域的新兴研究方向 研究主要基于Web of Science数据库的出版物,可能未涵盖所有相关研究 分析机器学习在心肌梗死领域的研究趋势,识别新兴趋势和热点 心肌梗死(MI)和机器学习(ML)的研究文献 机器学习 心血管疾病 文献计量分析 神经网络 文献数据 1,036篇出版物
7758 2025-02-23
Development and validation of a deep learning-enhanced prediction model for the likelihood of pulmonary embolism
2025, Frontiers in medicine IF:3.1Q1
研究论文 本研究开发并验证了一种基于深度学习的肺栓塞(PE)风险预测模型(PE-Mind),旨在克服现有临床工具的局限性,提供更精准的风险评估解决方案 使用卷积神经网络(CNN)并结合三个自定义模块,显著提升了预测性能,开发了实时操作的Web服务器PulmoRiskAI 未提及模型在更广泛人群中的适用性或外部验证结果 开发一种高效、精准的肺栓塞风险预测模型,以改进急性深静脉血栓(DVT)患者的风险评估 急性深静脉血栓(DVT)患者 机器学习 肺栓塞 深度学习 卷积神经网络(CNN) 临床数据 未明确提及样本数量
7759 2025-02-23
Automated Segmentation of Knee Menisci Using U-Net Deep Learning Model: Preliminary Results
2024-Dec, Maedica
研究论文 本研究使用U-Net深度学习模型对膝关节半月板进行自动检测和分割,初步结果显示该方法在临床环境中具有显著潜力 首次使用U-Net深度学习模型对膝关节半月板进行自动检测和分割,并通过与骨科医生的标注进行验证 数据稀缺性和需要序列特定优化是主要挑战 开发一种自动识别和分割膝关节半月板的模型 膝关节半月板 计算机视觉 NA 深度学习 U-Net MRI图像 104个膝关节MRI图像用于训练,50个MRI图像用于微调
7760 2025-02-23
Cough2COVID-19 detection using an enhanced multi layer ensemble deep learning framework and CoughFeatureRanker
2024-10-24, Scientific reports IF:3.8Q1
研究论文 本文介绍了Cough2COVID-19框架,该框架利用咳嗽音频信号进行COVID-19检测,并通过多层级集成深度学习(MLEDL)框架提高检测效率 提出了Cough2COVID-19框架和CoughFeatureRanker算法,通过咳嗽音频信号进行非侵入性COVID-19检测,显著提高了检测的准确性和效率 未提及具体的研究局限性 开发一种成本效益高、非侵入性且广泛可及的COVID-19检测方法 咳嗽音频信号 机器学习 COVID-19 多层级集成深度学习(MLEDL) 集成深度学习框架 音频 未提及具体样本数量
回到顶部