本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7761 | 2025-02-28 |
Applications of Artificial Intelligence, Deep Learning, and Machine Learning to Support the Analysis of Microscopic Images of Cells and Tissues
2025-Feb-15, Journal of imaging
IF:2.7Q3
DOI:10.3390/jimaging11020059
PMID:39997561
|
综述 | 本文探讨了人工智能(AI)、深度学习(DL)和机器学习(ML)在细胞和组织显微图像分析中的应用 | 综述了最新的AI和DL技术,特别是开源性软件和创新的深度神经网络架构在细胞检测和分割算法精度上的显著提升 | 主要面向生物学背景较弱的读者,可能缺乏对高级AI和ML技术的深入探讨 | 支持细胞和组织显微图像的分析,提供疾病中细胞组织的关键见解 | 细胞和组织的显微图像 | 数字病理学 | NA | 深度学习,机器学习 | 深度神经网络 | 图像 | NA |
7762 | 2025-02-28 |
InceptionDTA: Predicting drug-target binding affinity with biological context features and inception networks
2025-Feb-15, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2025.e42476
PMID:40007773
|
研究论文 | 本文介绍了一种名为InceptionDTA的新型药物-靶标结合亲和力预测模型,该模型结合了生物上下文特征和Inception网络 | InceptionDTA利用CharVec(Prot2Vec的增强变体)将生物上下文和分类特征整合到蛋白质序列编码中,并采用多尺度卷积架构从蛋白质序列和药物SMILES中提取局部和全局特征 | 尽管InceptionDTA在多个基准数据集上表现出色,但其在处理大规模数据集和复杂分子结构时可能仍面临挑战 | 提高药物-靶标结合亲和力预测的准确性和效率,以加速药物再利用和新药发现 | 药物-靶标结合亲和力 | 机器学习 | NA | 深度学习 | Inception网络 | 蛋白质序列和药物SMILES | 多个基准数据集 |
7763 | 2025-02-28 |
Deep Learning-Based Molecular Fingerprint Prediction for Metabolite Annotation
2025-Feb-14, Metabolites
IF:3.4Q2
DOI:10.3390/metabo15020132
PMID:39997757
|
研究论文 | 本文探讨了基于深度学习的分子指纹预测方法,用于代谢物注释 | 应用深度学习方法替代传统的光谱匹配,通过分子指纹与质谱测量之间的复杂关系进行代谢物注释 | 研究依赖于有限的公开光谱库,且仅涵盖已知化合物的一部分 | 研究深度学习在基于MS/MS光谱的分子指纹预测中的应用,并根据已知和预测的分子指纹相似性对代谢物ID进行排序 | 代谢物 | 机器学习 | NA | 液相色谱-质谱联用(LC-MS) | 深度学习 | 质谱数据 | 来自NIST、MoNA和HMDB的MS/MS光谱数据,以及CASMI 2016、CASMI 2017和CASMI 2022基准数据集 |
7764 | 2025-02-28 |
Facial Recognition Algorithms: A Systematic Literature Review
2025-Feb-13, Journal of imaging
IF:2.7Q3
DOI:10.3390/jimaging11020058
PMID:39997560
|
系统文献综述 | 本文通过系统文献综述,探讨了面部识别技术的新发展和挑战,包括系统原理、性能指标及其在健康、社会和安防等领域的应用 | 重点分析了深度学习技术(尤其是CNN)在面部识别系统中的最新进展,显著提高了系统的准确性和效率 | 指出了面部识别技术面临的挑战,包括隐私问题、伦理困境和系统偏见 | 理解面部识别技术的新发展和挑战,并探讨其在不同领域的应用 | 面部识别技术的系统原理、性能指标及其应用 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | NA |
7765 | 2025-02-28 |
Exploring the Efficacy and Target Genes of Atractylodes Macrocephala Koidz Against Alzheimer's Disease Based on Multi-Omics, Computational Chemistry, and Experimental Verification
2025-Feb-11, Current issues in molecular biology
IF:2.8Q3
DOI:10.3390/cimb47020118
PMID:39996839
|
研究论文 | 本研究通过多组学、计算化学和实验验证,探讨了白术(Atractylodes Macrocephala Koidz)对阿尔茨海默病(AD)的疗效及其靶基因 | 首次结合多组学、计算化学和实验验证,揭示了白术通过调节EGFR和HMOX1基因抑制铁死亡,从而缓解AD症状的机制 | 研究主要基于斑马鱼模型,未来需要在更复杂的动物模型或人体临床试验中进一步验证 | 揭示白术对阿尔茨海默病的疗效及其铁死亡相关机制 | 白术(Atractylodes Macrocephala Koidz)及其对阿尔茨海默病的影响 | 计算化学与多组学分析 | 阿尔茨海默病 | 基因集变异分析(GSVA)、转录组数据、转录组全关联研究(TWAS)、孟德尔随机化(MR)、分子对接、分子动力学模拟、实时定量PCR | 深度学习模型 | 转录组数据、分子对接数据、斑马鱼行为数据 | 斑马鱼AD模型 |
7766 | 2025-02-28 |
The Relationship Between Learning Environment Perception, Achievement Goals, and the Undergraduate Deep Learning Approach: A Longitudinal Mediation Model
2025-Feb-11, Journal of Intelligence
IF:2.8Q1
DOI:10.3390/jintelligence13020019
PMID:39997170
|
研究论文 | 本研究探讨了中国一所研究型大学本科生学习环境感知、成就目标与深度学习方式之间的关系,采用纵向中介模型进行分析 | 通过纵向中介模型揭示了学习环境感知对本科生深度学习方式的影响路径,特别是掌握-接近目标和掌握-回避目标的中介作用 | 样本仅来自一所中国研究型大学,可能限制了结果的普遍性 | 探讨学习环境感知、成就目标与深度学习方式之间的关系,为提升本科生学习质量的教学改革提供实证依据 | 260名本科生,包括135名顶尖本科生和125名普通本科生 | 教育心理学 | NA | 纵向中介模型 | NA | 问卷调查数据 | 260名本科生,包括135名顶尖本科生和125名普通本科生 |
7767 | 2025-02-28 |
Comparative Analysis of Deep Learning Architectures for Macular Hole Segmentation in OCT Images: A Performance Evaluation of U-Net Variants
2025-Feb-11, Journal of imaging
IF:2.7Q3
DOI:10.3390/jimaging11020053
PMID:39997555
|
研究论文 | 本研究比较了不同骨干架构的U-Net变体在光学相干断层扫描(OCT)图像中黄斑裂孔(MH)分割的性能 | 首次全面比较了多种U-Net变体在MH分割中的性能,并评估了包括Transformer在内的多种架构 | HD95指标在评估小区域(如MH)时不可靠,常返回'nan'值 | 评估不同U-Net变体在OCT图像中MH分割的性能 | OCT图像中的黄斑裂孔(MH) | 计算机视觉 | 眼科疾病 | 光学相干断层扫描(OCT) | U-Net, InceptionNetV4, VGG16, VGG19, ResNet152, DenseNet121, EfficientNet-B7, MobileNetV2, Xception, Transformer | 图像 | OIMHS数据集 |
7768 | 2025-02-28 |
A Scale-Invariant Looming Detector for UAV Return Missions in Power Line Scenarios
2025-Feb-10, Biomimetics (Basel, Switzerland)
DOI:10.3390/biomimetics10020099
PMID:39997122
|
研究论文 | 本文提出了一种尺度不变逼近检测器(SILD),用于无人机在电力线场景中的返航任务,以提高碰撞避免能力 | SILD通过预处理视频帧、使用注意力掩码增强运动区域,并模拟生物觉醒来识别逼近威胁,同时抑制噪声,克服了运动视觉的限制,确保了对不同尺度逼近物体的一致敏感性 | NA | 提高无人机在电力线场景中的碰撞避免能力 | 无人机在电力线场景中的返航任务 | 计算机视觉 | NA | 深度学习 | SILD | 视频 | NA |
7769 | 2025-02-28 |
Enhancing U-Net Segmentation Accuracy Through Comprehensive Data Preprocessing
2025-Feb-08, Journal of imaging
IF:2.7Q3
DOI:10.3390/jimaging11020050
PMID:39997552
|
研究论文 | 本文通过全面的数据预处理提升U-Net分割模型在CT扫描中肺部区域分割的准确性 | 提出了一种包括CT图像归一化、二值化提取肺部区域和形态学操作去除伪影的预处理流程,并应用ROI过滤有效隔离肺部区域 | 未提及模型在其他类型医学图像上的泛化能力 | 优化深度学习在医学图像分析中的应用,特别是肺部疾病如COPD和COVID-19的自动分析 | CT扫描中的肺部区域 | 数字病理学 | 肺部疾病 | CT扫描 | U-Net | 图像 | 未提及具体样本数量 |
7770 | 2025-02-28 |
Sequence-Aware Vision Transformer with Feature Fusion for Fault Diagnosis in Complex Industrial Processes
2025-Feb-08, Entropy (Basel, Switzerland)
DOI:10.3390/e27020181
PMID:40003178
|
研究论文 | 本文提出了一种新颖的全局和局部特征融合序列感知视觉变换器(GLF-ViT),用于复杂工业过程中的故障诊断 | 通过修改特征嵌入以保留采样点相关性并保留更多局部信息,融合分类令牌的全局特征和编码器的局部特征,显著增强了复杂故障诊断的能力 | 尽管在TE数据集和电力传输故障数据集上表现出色,但该方法在其他类型工业数据上的泛化能力尚未验证 | 提高复杂工业过程中高维时间序列故障诊断的准确性 | 复杂工业过程中的故障数据 | 计算机视觉 | NA | NA | Vision Transformer (ViT) | 时间序列数据 | Tennessee Eastman (TE) 数据集和电力传输故障数据集 |
7771 | 2025-02-28 |
Metabolic Objectives and Trade-Offs: Inference and Applications
2025-Feb-06, Metabolites
IF:3.4Q2
DOI:10.3390/metabo15020101
PMID:39997726
|
综述 | 本文综述了从多组学数据中确定代谢目标和权衡的挑战,并探讨了其在个性化医学、药物发现、组织工程和系统生物学中的潜在应用 | 结合单细胞组学、代谢建模和机器学习/深度学习方法,实现了在转录组和代谢水平上推断细胞目标,将基因表达模式与代谢表型联系起来 | NA | 确定细胞代谢目标,以支持代谢工程、细胞重编程和药物发现等应用 | 细胞代谢网络 | 系统生物学 | NA | 单细胞组学、代谢建模、机器学习/深度学习 | NA | 多组学数据 | NA |
7772 | 2025-02-28 |
Fault Diagnosis of Semi-Supervised Electromechanical Transmission Systems Under Imbalanced Unlabeled Sample Class Information Screening
2025-Feb-06, Entropy (Basel, Switzerland)
DOI:10.3390/e27020175
PMID:40003172
|
研究论文 | 本文提出了一种新的半监督故障诊断方法,针对机电传动系统在健康监测中标签数据稀缺和非标签数据丰富的问题,通过主动学习的信息筛选机制和数据不平衡驱动的成本敏感函数,显著提高了诊断模型对非标签样本的识别能力 | 提出了一种基于主动学习的信息筛选机制,结合数据不平衡驱动的成本敏感函数,解决了传统半监督深度学习方法在伪标签信息可靠性、非标签数据特征提取准确性和样本选择不平衡方面的不足 | 方法在仅包含少量标签数据的情况下进行了验证,但在更广泛的数据集和实际应用中的效果仍需进一步验证 | 解决机电传动系统健康监测中标签数据稀缺和非标签数据丰富的问题,提高故障诊断的准确性 | 机电传动系统的状态数据 | 机器学习 | NA | 主动学习,半监督学习 | 深度学习模型 | 状态数据 | 两个数据集,共12个实验场景 |
7773 | 2025-02-28 |
Training Generalized Segmentation Networks with Real and Synthetic Cryo-ET data
2025-Feb-05, bioRxiv : the preprint server for biology
DOI:10.1101/2025.01.31.635598
PMID:39975172
|
研究论文 | 本文介绍了一种名为CryoTomoSim (CTS)的开源软件包,用于生成合成冷冻电子断层扫描数据,以训练深度学习分割网络 | 开发了CryoTomoSim (CTS)软件包,通过合成数据训练深度学习分割网络,解决了真实训练数据获取的瓶颈问题 | 尽管合成数据作为初始模型非常有效,但其准确性目前有限,需要真实细胞数据来训练最准确和可推广的U-Net模型 | 研究如何通过合成和真实数据训练通用的冷冻电子断层扫描分割网络 | 冷冻电子断层扫描数据中的大分子复合物和细胞特征 | 计算机视觉 | NA | 冷冻电子断层扫描 (cryo-ET) | U-Net | 图像 | 超过100个神经元生长锥的断层扫描数据 |
7774 | 2025-02-28 |
Exploring Applications of Artificial Intelligence in Critical Care Nursing: A Systematic Review
2025-Feb-04, Nursing reports (Pavia, Italy)
DOI:10.3390/nursrep15020055
PMID:39997791
|
系统综述 | 本文系统评估了人工智能在重症监护护理领域的当前应用 | 本文综合分析了多种AI技术在重症监护护理中的应用,包括经典模型、机器学习方法、深度学习架构和生成式AI工具 | 研究中的异质性限制了得出关于AI在重症监护护理中应用效果的明确结论 | 评估人工智能在重症监护护理中的应用及其对患者结果的影响 | 重症监护护理中的患者和护理实践 | 医疗保健 | 重症监护 | 多种AI技术,包括逻辑回归、支持向量机、随机森林、神经网络和生成式AI工具如ChatGPT | 多种模型,包括经典模型、机器学习模型、深度学习模型和生成式AI模型 | 结构化数据(如生命体征和实验室结果)和非结构化数据(如护理记录和患者历史),以及音频数据 | 24项研究,涉及1364篇初步筛选的文章 |
7775 | 2025-02-27 |
First-in-Men Online Adaptive Robotic Stereotactic Body Radiation Therapy: Toward Ultrahypofractionation for High-Risk Prostate Cancer Patients
2025-Feb, Advances in radiation oncology
IF:2.2Q2
DOI:10.1016/j.adro.2024.101701
PMID:39866592
|
研究论文 | 本文介绍了针对高风险前列腺癌患者的在线自适应机器人立体定向放射治疗的发展、临床前验证和临床测试 | 首次在人体中应用在线自适应机器人立体定向放射治疗,针对高风险前列腺癌患者,探索超分割放疗的可行性 | 研究样本量较小,仅为60例,且仅针对低体积转移前列腺癌患者,结果可能不具有普遍性 | 探索在线自适应放射治疗在高风险前列腺癌患者中的应用,以减少精囊的计划靶区(PTV)边缘 | 高风险前列腺癌患者,特别是精囊包含在靶区内的患者 | 数字病理 | 前列腺癌 | 在线自适应放射治疗,CT-on-rails,深度学习自动轮廓 | 深度学习 | CT图像 | 60例低体积转移前列腺癌患者 |
7776 | 2025-02-28 |
Advancing MRI Reconstruction: A Systematic Review of Deep Learning and Compressed Sensing Integration
2025-Feb-01, ArXiv
PMID:39975448
|
综述 | 本文系统回顾了深度学习与压缩感知在MRI重建中的集成应用 | 深度学习与压缩感知的结合显著提高了MRI重建的速度和准确性 | 未提及具体的技术限制或挑战 | 探讨深度学习在MRI重建中的应用及其潜力 | MRI图像重建 | 医学影像 | NA | 深度学习, 压缩感知 | NA | 图像 | NA |
7777 | 2025-02-28 |
Diagnosis of Alzheimer's disease using transfer learning with multi-modal 3D Inception-v4
2025-Feb-01, Quantitative imaging in medicine and surgery
IF:2.9Q2
DOI:10.21037/qims-24-1577
PMID:39995734
|
研究论文 | 本研究提出了一种基于多模态特征和迁移学习的3D Inception-v4模型,用于阿尔茨海默病的诊断 | 引入了多模态三维Inception-v4模型,并采用迁移学习方法结合MRI和临床评分数据进行AD诊断 | 未提及具体局限性 | 解决基于多模态特征的阿尔茨海默病诊断问题 | 阿尔茨海默病患者 | 计算机视觉 | 老年病 | 迁移学习 | 3D Inception-v4 | MRI图像和临床评分数据 | 使用ADNI数据库的数据进行预训练,并使用独立验证数据进行微调 |
7778 | 2025-02-28 |
Towards Trustworthy AI in Healthcare: Epistemic Uncertainty Estimation for Clinical Decision Support
2025-Jan-31, Journal of personalized medicine
IF:3.0Q1
DOI:10.3390/jpm15020058
PMID:39997335
|
研究论文 | 本文探讨了在医疗决策支持系统中实现可信赖AI的重要性,特别是通过估计认知不确定性来提高系统的可靠性 | 提出了使用Spectral Normalized Neural Gaussian Process (SNGP)模型来量化知识不确定性,相比传统的神经网络集成方法,提供了更可靠的不确定性估计 | 研究主要基于低维玩具数据集和MIMIC3研究中的电子健康记录(EHR)数据,可能无法完全代表所有临床场景 | 提高AI在医疗决策支持系统中的可靠性和可信赖性 | 电子健康记录(EHR)数据,特别是重症监护病房住院患者的死亡率预测 | 机器学习 | NA | Spectral Normalized Neural Gaussian Process (SNGP), 神经网络集成 (ENN) | Encoder-Only Transformer, SNGP, ENN | 时间序列数据(EHR) | MIMIC3研究中的电子健康记录(EHR)数据 |
7779 | 2025-02-28 |
An Online Evaluation Method for Random Number Entropy Sources Based on Time-Frequency Feature Fusion
2025-Jan-27, Entropy (Basel, Switzerland)
DOI:10.3390/e27020136
PMID:40003132
|
研究论文 | 本文提出了一种基于时频特征融合的在线随机数熵源评估方法,通过神经网络预测随机序列的下一位,并引入了一种新的深度学习架构FFT-ATT-LSTM | 提出了一种新的深度学习架构FFT-ATT-LSTM,结合了简化的软注意力机制和快速傅里叶变换,有效融合时域和频域特征,提高了预测精度 | NA | 解决传统熵源评估方法难以在线部署的问题,实现在线检测熵源质量 | 随机数熵源 | 机器学习 | NA | 快速傅里叶变换(FFT),软注意力机制 | FFT-ATT-LSTM | 随机序列数据 | NA |
7780 | 2025-02-28 |
Semantic-Guided Transformer Network for Crop Classification in Hyperspectral Images
2025-Jan-26, Journal of imaging
IF:2.7Q3
DOI:10.3390/jimaging11020037
PMID:39997540
|
研究论文 | 本文提出了一种语义引导的Transformer网络(SGTN),用于高光谱图像中的作物分类,旨在提高分类精度和鲁棒性 | 提出了多尺度空间-光谱信息提取(MSIE)模块和语义引导注意力(SGA)模块,结合两阶段特征提取结构,有效克服了现有深度学习方法的局限性 | 未提及具体的数据集规模限制或模型计算复杂度问题 | 提高高光谱遥感图像中作物分类的精度和鲁棒性 | 高光谱遥感图像中的农作物 | 计算机视觉 | NA | 高光谱遥感 | Transformer | 图像 | Indian Pines、Pavia University和Salinas基准数据集 |