深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24103 篇文献,本页显示第 761 - 780 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
761 2025-04-29
Minimax Bayesian Neural Networks
2025-Mar-25, Entropy (Basel, Switzerland)
research paper 本文研究了使用极小极大方法的更保守的贝叶斯神经网络(BNNs),揭示了闭环神经网络与BNNs之间的联系 将极小极大方法应用于贝叶斯神经网络,提出了一种更保守的BNNs,并揭示了其与闭环神经网络的联系 仅在简单数据集上进行了测试,未在大规模或复杂数据集上验证 研究贝叶斯神经网络的鲁棒性及其与闭环神经网络的关系 贝叶斯神经网络(BNNs)和闭环神经网络 machine learning NA NA Bayesian neural networks (BNNs), deterministic neural network, stochastic neural network NA 简单数据集(具体数量未提及)
762 2025-04-29
Large-Scale Coastal Marine Wildlife Monitoring with Aerial Imagery
2025-Mar-24, Journal of imaging IF:2.7Q3
研究论文 本研究探讨了利用航拍图像和深度学习方法自动检测、分类和计数沿海海洋野生动物的可行性 开发了一个深度学习框架,用于从航拍图像中自动识别和分类海洋野生动物,支持生态动态分析 模型的F1分数在0.7到0.9之间,具体取决于个体类型,可能存在识别精度不稳定的问题 提高沿海海洋野生动物监测的效率和准确性,支持生物多样性保护和环境管理 南象海豹和南美海狮群体 计算机视觉 NA 航拍图像采集和深度学习 深度学习框架 图像 在阿根廷巴塔哥尼亚的Valdés半岛采集的高分辨率航拍图像数据集
763 2025-04-29
Development of an Intelligent Tablet Press Machine for the In-Line Detection of Defective Tablets Using Machine Learning and Deep Learning Models
2025-Mar-24, Pharmaceutics IF:4.9Q1
研究论文 开发了一种集成机器学习和深度学习模型的智能压片机,用于实时检测缺陷药片 将机器学习和深度学习模型集成到压片机中,实现实时检测药片缺陷,作为过程分析技术工具 研究仅针对特定药物(盐酸二甲双胍)的压片过程,未验证对其他药物的适用性 开发一种智能压片机,用于实时检测药片缺陷 盐酸二甲双胍药片 机器学习 NA 过程分析技术(PAT) 随机森林(RF), 人工神经网络(ANN) 实时处理数据(压缩力、排出力、压缩速度等) 商业规模实验生产的盐酸二甲双胍药片
764 2025-04-29
Deep Learning-Based Detection of Aflatoxin B1 Contamination in Almonds Using Hyperspectral Imaging: A Focus on Optimized 3D Inception-ResNet Model
2025-Mar-22, Toxins IF:3.9Q1
research paper 本研究提出了一种基于深度学习的3D Inception-ResNet模型,利用高光谱图像检测杏仁中的黄曲霉毒素B1污染 采用优化的3D Inception-ResNet架构,结合特征选择算法,提高了分类准确率和处理效率 未提及模型在其他食品污染检测中的泛化能力 开发一种快速、无损的黄曲霉毒素B1污染检测方法,确保食品安全 杏仁中的黄曲霉毒素B1污染 computer vision NA hyperspectral imaging 3D Inception-ResNet image NA
765 2025-04-29
Deep Learning-Enhanced Motor Training: A Hybrid VR and Exoskeleton System for Cognitive-Motor Rehabilitation
2025-Mar-22, Bioengineering (Basel, Switzerland)
research paper 本研究探索了将实时机器学习分类的运动想象数据与脑机接口相结合,利用预制外骨骼和集成虚拟现实(VR)的EEG头戴设备,开发实用且可扩展的康复和日常运动训练治疗方案 关键创新包括用于数据分类的运动想象EEG采集协议,以及利用小波包变换进行特征提取的深度学习机器学习框架,并开发了新颖的VR钓鱼游戏以动态响应EEG输出 临床测试仍在进行中 开发实用且可扩展的康复和日常运动训练治疗方案 老年人的认知运动功能 脑机接口 geriatric disease EEG, VR, 外骨骼 SVM, CNN, LSTM EEG信号 NA
766 2025-04-29
A Color-Based Multispectral Imaging Approach for a Human Detection Camera
2025-Mar-21, Journal of imaging IF:2.7Q3
研究论文 提出了一种基于颜色的多光谱成像方法,用于开发实时人体检测相机 使用四个特定波长(453、556、668和708 nm)进行衣物与背景分离,构建轻量级机器学习模型(多层感知机) 仅适用于白天条件和常见织物,对部分遮挡物体可能效果有限 开发一种支持实时处理的人体检测相机 衣物(作为人体检测的代理) 计算机视觉 NA 多光谱成像 多层感知机(MLP) 多光谱图像 NA
767 2025-04-29
CAD-Skin: A Hybrid Convolutional Neural Network-Autoencoder Framework for Precise Detection and Classification of Skin Lesions and Cancer
2025-Mar-21, Bioengineering (Basel, Switzerland)
research paper 提出了一种结合CNN和自动编码器的深度学习算法CAD-Skin,用于精确检测和分类皮肤病变及癌症 结合了多尺度视网膜、伽马校正、非锐化掩蔽和对比度受限自适应直方图均衡化的预处理方法,并集成了量子支持向量机(QSVM)进行最终分类 未明确提及在实际临床环境中的适用性验证 提高皮肤病变和癌症的诊断效率和分类准确性 皮肤病变和癌症,包括光化性角化病、恶性黑色素瘤等 digital pathology skin cancer deep learning, data augmentation CNN, Autoencoder, QSVM image PAD-UFES-20-Modified, ISIC-2018, ISIC-2019数据集
768 2025-04-29
Local Extremum Mapping for Weak Supervision Learning on Mammogram Classification and Localization
2025-Mar-21, Bioengineering (Basel, Switzerland)
research paper 提出了一种新的局部极值映射(LEM)机制,用于乳腺X光片分类和弱监督病变定位 通过局部极值映射机制,仅使用图像级标签实现病变定位,显著降低标注成本 在病变定位方面的Dice相似系数为0.37,仍有提升空间 提高乳腺X光片的早期和准确检测,以提升生存率 乳腺X光片中的病变 digital pathology breast cancer weak supervision learning CNN image 两个公共乳腺X光片数据集(CBIS-DDSM和INbreast)
769 2025-04-29
Methods for Brain Connectivity Analysis with Applications to Rat Local Field Potential Recordings
2025-Mar-21, Entropy (Basel, Switzerland)
research paper 本文介绍了一系列用于分析大脑依赖网络的统计方法,并应用于大鼠海马局部场电位(LFP)时间序列数据 结合经典和前沿方法,探索了多种统计技术(如Granger因果性、谱传递熵、小波相干性等)以及拓扑数据分析(TDA)和深度学习框架,用于捕捉神经动态和连接性 未提及具体样本量或实验设计的局限性 分析大脑依赖网络以理解潜在的神经机制(如感知、行动和记忆) 大鼠海马局部场电位(LFP)时间序列数据,专注于非空间嗅觉信息的编码 神经科学 NA Granger causality (GC), robust canonical coherence analysis, spectral transfer entropy (STE), wavelet coherence, topological data analysis (TDA), deep learning-based canonical correlation frameworks NA 时间序列数据(局部场电位记录) NA
770 2025-04-29
Global Trends in Diabetic Foot Research (2004-2023): A Bibliometric Study Based on the Scopus Database
2025-Mar-21, International journal of environmental research and public health
研究论文 通过文献计量分析探讨2004-2023年间糖尿病足研究的全球趋势 利用Scopus数据库进行文献计量分析,揭示糖尿病足研究的发展趋势和热点 仅基于Scopus数据库,可能未涵盖所有相关研究 分析糖尿病足研究的全球趋势和未来方向 2004-2023年间Scopus数据库中关于糖尿病足的研究文献 文献计量学 糖尿病足 文献计量分析工具(Excel, Python, Biblioshiny, VOSviewer) NA 文献数据 7136篇文献
771 2025-04-29
Deep learning in GPCR drug discovery: benchmarking the path to accurate peptide binding
2025-Mar-04, Briefings in bioinformatics IF:6.8Q1
research paper 本文评估了深度学习在预测G蛋白偶联受体(GPCRs)与其内源性肽配体相互作用中的应用,并比较了多种深度学习工具的性能 通过比较多种深度学习工具在GPCR与肽配体相互作用预测中的表现,提出了一个实用的模型选择指南,并创建了一个独立的基准测试集 竞争性锦标赛方法虽然加速了性能,但降低了真阳性恢复率 评估深度学习模型在GPCR药物发现中的准确性和实用性 G蛋白偶联受体(GPCRs)及其内源性肽配体 machine learning NA 深度学习(DL) AlphaFold 2.3 (AF2), AlphaFold 3 (AF3), Chai-1, NeuralPLexer, RoseTTAFold-AllAtom, Peptriever, ESMFold, D-SCRIPT protein sequences and structures 124 ligands and 1240 decoys, 67 recent complexes
772 2025-04-29
Aminoacyl-tRNA synthetase urzymes optimized by deep learning behave as a quasispecies
2025-Mar, Structural dynamics (Melville, N.Y.)
research paper 利用深度学习优化氨酰-tRNA合成酶原酶,使其表现出类似准种的行为 使用ProteinMPNN和AlphaFold2深度学习算法重新设计优化的LeuAC原酶,显著提高了溶解度和催化能力 仅测试了8种变体,样本量较小 探索遗传编码起源的蛋白质设计 氨酰-tRNA合成酶原酶 machine learning NA ProteinMPNN, AlphaFold2 深度学习 蛋白质序列 8种变体
773 2025-04-29
Artificial Intelligence-Driven Approaches to Endoscopic Gastric Cancer Detection: Current Progress and Future Directions
2025-Mar, Cureus
research paper 本文探讨了人工智能在胃镜胃癌检测中的当前进展和未来方向 利用深度学习模型(如CNN)提升胃镜检测胃癌的准确性和标准化评估 数据质量、假阳性/假阴性、地域偏见和监管障碍等问题仍需解决 提高胃癌的早期检测率,优化临床工作流程 胃癌患者的内窥镜图像 digital pathology gastric cancer deep learning CNN image NA
774 2025-04-29
The Role of Artificial Intelligence in the Prediction, Diagnosis, and Management of Cardiovascular Diseases: A Narrative Review
2025-Mar, Cureus
review 本文综述了人工智能在心血管疾病预测、诊断和管理中的作用及其面临的挑战 探讨了AI技术(特别是机器学习和深度学习)在分析大规模数据集、提高诊断准确性和优化治疗策略方面的变革潜力 AI实施面临监管、隐私、人群验证等障碍,以及系统互操作性和临床医生接受度的问题 探索AI在心血管护理中的应用、当前使用的局限性以及未来整合以改善患者预后 心血管疾病(CVDs) machine learning cardiovascular disease machine learning, deep learning NA massive datasets NA
775 2025-04-29
Proposal for a Method for Assessing the Quality of an Updated Deep Learning-Based Automatic Segmentation Program
2025-Mar, Cureus
research paper 本研究旨在验证商业深度学习自动分割(DLS)方法在更新后是否能保持轮廓几何精度,并提出一种简化验证方法以减少临床工作负担 提出了一种简化验证方法,用于评估更新后的深度学习自动分割程序的质量,同时减少对临床工作流程的负担 研究中28个轮廓中有9个器官未满足既定标准,表明某些器官的轮廓质量在更新后有所下降 验证商业深度学习自动分割方法在更新后的几何精度,并简化验证流程 头颈、胸部、腹部和盆腔区域的28个器官 digital pathology NA deep learning-based automatic segmentation (DLS) NA CT imaging 109名参与者
776 2025-04-29
Influence of early through late fusion on pancreas segmentation from imperfectly registered multimodal magnetic resonance imaging
2025-Mar, Journal of medical imaging (Bellingham, Wash.)
research paper 研究早期到晚期融合对不完美配准的多模态磁共振图像中胰腺分割的影响 探讨了在深度学习模型中不同融合点对不完美配准的多模态图像分割性能的影响,并发现最佳融合点因模型而异 在腹部图像对不完美配准的情况下,融合带来的性能提升较小,且最佳融合点依赖于具体模型 研究多模态融合在胰腺分割中的应用,以改善对糖尿病等疾病的研究能力 胰腺及周围腹部解剖结构 digital pathology diabetes multimodal magnetic resonance imaging (MRI) UNet, nnUNet image 353 pairs of T2-weighted and T1-weighted abdominal MR images from 163 subjects
777 2025-04-29
Improving radiologist detection of meniscal abnormality on undersampled, deep learning reconstructed knee MRI
2025-Mar, Radiology advances
研究论文 评估人工智能辅助工具在放射科医生解读欠采样深度学习重建膝关节MRI中半月板异常的效果 使用AI辅助工具提高放射科医生在欠采样深度学习重建图像上的半月板异常检测性能 研究为回顾性设计,样本量有限(896名参与者) 评估AI辅助工具对放射科医生诊断半月板异常的影响,并分析重建质量指标与异常检测性能的关系 膝关节MRI图像中的半月板异常 数字病理学 骨科疾病 深度学习重建 目标检测模型 MRI图像 896名参与者(平均年龄44.7±15.3岁,472名女性)
778 2025-04-29
Improved in Silico Identification of Protein-Protein Interactions Using Deep Learning Approach
2025 Jan-Dec, IET systems biology IF:1.9Q3
研究论文 本文提出了一种名为Deep_PPI的新型深度学习模型,用于预测多种物种的蛋白质-蛋白质相互作用 开发了Deep_PPI模型,采用双卷积头结构和二进制轮廓编码技术,显著提升了蛋白质-蛋白质相互作用的预测性能 虽然模型性能优于现有方法,但仍需进一步验证其在更广泛物种和复杂相互作用中的适用性 提高蛋白质-蛋白质相互作用的计算机预测准确性 多种生物的蛋白质序列(包括人类、线虫、大肠杆菌等) 生物信息学 癌症、自身免疫性疾病、恶性贫血等 深度学习、二进制轮廓编码 CNN(一维卷积神经网络) 蛋白质序列数据 多种物种数据集(人类、线虫、大肠杆菌等)
779 2025-04-29
A divide-and-conquer approach based on deep learning for long RNA secondary structure prediction: Focus on pseudoknots identification
2025, PloS one IF:2.9Q1
research paper 提出了一种基于深度学习的DivideFold方法,用于预测长RNA的二级结构,特别是假结 采用分治法递归地将长RNA序列分割成小片段,利用现有模型预测假结,解决了长RNA序列和假结预测的计算挑战和精度问题 未明确提及具体局限性 提高长RNA二级结构及假结的预测准确性 长RNA序列及其二级结构,特别是假结 computational biology NA deep learning DivideFold RNA序列数据 未明确提及具体样本量
780 2025-04-29
Synthetic fibrosis distributions for data augmentation in predicting atrial fibrillation ablation outcomes: an in silico study
2025, Frontiers in cardiovascular medicine IF:2.8Q2
研究论文 本研究利用去噪扩散概率模型生成合成纤维化分布,以增强深度学习预测心房颤动消融结果的数据集 使用去噪扩散概率模型生成合成纤维化分布,并通过生物物理模拟扩增训练数据集,以提高深度学习模型的预测性能 研究基于计算机模拟,尚未在真实患者数据中验证其临床适用性 提高深度学习模型预测心房颤动消融结果的准确性 心房颤动患者的纤维化分布及消融策略效果 数字病理学 心血管疾病 LGE-MRI, 去噪扩散概率模型, 生物物理模拟 深度学习, 去噪扩散概率模型 图像, 模拟数据 100个真实LGE-MRI分布用于训练模型,生成1000个双心房网格用于模拟
回到顶部