本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7781 | 2025-02-22 |
Automated Coronary Artery Segmentation with 3D PSPNET using Global Processing and Patch Based Methods on CCTA Images
2025-Feb-20, Cardiovascular engineering and technology
IF:1.6Q4
DOI:10.1007/s13239-025-00775-0
PMID:39979546
|
研究论文 | 本文提出了一种使用3D PSPNET进行冠状动脉自动分割的方法,应用于3D冠状动脉计算机断层扫描血管造影(CCTA)图像 | 将2D PSPNet改进为3D PSPNet,并采用全局处理和基于补丁的处理方法来评估网络性能 | 仅使用了200张ImageCAS数据集的图像进行实验,样本量较小 | 提高冠状动脉疾病(CAD)的诊断和治疗准确性,如狭窄检测和斑块分析 | 冠状动脉 | 计算机视觉 | 心血管疾病 | 3D PSPNet | 3D PSPNet | 3D CCTA图像 | 200张ImageCAS数据集的图像 |
7782 | 2025-02-22 |
A New Method Using Deep Learning to Predict the Response to Cardiac Resynchronization Therapy
2025-Feb-20, Journal of imaging informatics in medicine
DOI:10.1007/s10278-024-01380-8
PMID:39979759
|
研究论文 | 本研究提出了一种结合临床变量、心电图特征和心脏功能评估参数与门控SPECT MPI极坐标图的深度学习方法,用于预测心脏再同步化治疗(CRT)的响应 | 通过结合预训练的VGG16模型和多层感知器,利用SPECT MPI极坐标图和临床特征、心电图参数、SPECT-MPI衍生参数等表格数据,提高了CRT响应预测的准确性 | 研究样本量较小(218例患者),且仅基于单一中心的患者数据,可能影响模型的泛化能力 | 提高心脏再同步化治疗(CRT)响应预测的准确性 | 218例接受CRT植入的患者 | 机器学习 | 心血管疾病 | 门控单光子发射计算机断层扫描心肌灌注成像(SPECT MPI) | VGG16模型和多层感知器 | 图像和表格数据 | 218例患者 |
7783 | 2025-02-22 |
A comparative analysis of deep learning architectures with data augmentation and multichannel input for locoregional breast cancer radiotherapy
2025-Feb-20, Journal of applied clinical medical physics
IF:2.0Q3
DOI:10.1002/acm2.70047
PMID:39980269
|
研究论文 | 本文比较了2D和3D U-Net模型在局部乳腺癌放疗中的剂量预测效果,评估了使用计算量较小的模型的适用性 | 比较了2D和3D U-Net模型在局部乳腺癌放疗中的剂量预测效果,并评估了数据增强和多通道输入对模型性能的影响 | 3D模型的训练时间显著增加,且2D Attention U-Net的准确性未达到其他模型的水平 | 评估在局部乳腺癌放疗中使用计算量较小的2D模型是否可以达到与3D模型和临床计划相当的效果 | 89名局部乳腺癌患者的放疗数据 | 数字病理学 | 乳腺癌 | 深度学习 | 2D Attention U-Net, 2D HD U-Net, 3D U-Net | 图像 | 89名局部乳腺癌患者 |
7784 | 2025-02-22 |
KaMLs for Predicting Protein pKa Values and Ionization States: Are Trees All You Need?
2025-Feb-11, Journal of chemical theory and computation
IF:5.7Q1
DOI:10.1021/acs.jctc.4c01602
PMID:39882632
|
研究论文 | 本文介绍了基于决策树和图注意力网络(GAT)的KaML模型,用于预测蛋白质pKa值和电离状态,并展示了其在预测性能上的显著优势 | KaML模型通过创新方法如酸和碱的分别处理、使用AlphaFold结构进行数据增强、以及在理论p数据库上进行模型预训练,显著提升了预测性能,特别是在去质子化半胱氨酸和赖氨酸的预测上 | 机器学习方法受限于实验数据的稀缺性,尽管KaML模型在现有数据上表现出色,但其泛化能力仍需进一步验证 | 开发更准确的蛋白质电离状态预测模型,以促进生物学理解和计算机辅助药物发现 | 蛋白质的电离状态 | 机器学习 | NA | 决策树、图注意力网络(GAT) | KaML-CBtree、GAT | 实验数据、理论p数据库 | PKAD-3数据库中的蛋白质数据 |
7785 | 2025-02-22 |
Discovery of anticancer peptides from natural and generated sequences using deep learning
2025-Feb, International journal of biological macromolecules
IF:7.7Q1
DOI:10.1016/j.ijbiomac.2024.138880
PMID:39706427
|
研究论文 | 本研究提出了一种基于三通道深度学习架构的CNBT-ACPred模型,用于预测抗癌肽(ACPs),并通过大量体外和体内实验验证其有效性 | CNBT-ACPred模型在准确性和MCC指标上显著优于现有模型,并通过实验验证了其预测的候选肽的抗癌活性 | 尽管模型表现优异,但缺乏更多湿实验验证可能限制了其进一步应用 | 开发一种高效的抗癌肽预测模型,并验证其预测结果的有效性 | 抗癌肽(ACPs)及其在癌症治疗中的应用 | 机器学习 | 癌症 | 深度学习 | CNN | 序列数据 | 超过3.8百万条Uniprot序列和10万条生成序列,最终验证了41条候选肽中的37条 |
7786 | 2025-02-22 |
Augmenting cybersecurity through attention based stacked autoencoder with optimization algorithm for detection and mitigation of attacks on IoT assisted networks
2024-Dec-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-81162-y
PMID:39730515
|
研究论文 | 本文提出了一种基于注意力机制的堆叠自编码器与鹈鹕优化算法相结合的网络安全方法(CASAE-POADMA),用于检测和缓解物联网(IoT)辅助网络中的攻击 | 提出了结合注意力机制的堆叠自编码器(ASAE)和鹈鹕优化算法(POA)的新型网络安全方法,显著提高了攻击检测的准确性 | 方法仅在基准数据库上进行了验证,未在实际IoT网络环境中进行大规模测试 | 提高物联网网络的安全性,检测和缓解网络攻击 | 物联网(IoT)辅助网络 | 网络安全 | NA | 机器学习(ML)、深度学习(DL) | 注意力机制的堆叠自编码器(ASAE) | 网络数据 | 基准数据库 |
7787 | 2025-02-22 |
Intelligent ultrafast total-body PET for sedation-free pediatric [18F]FDG imaging
2024-Jul, European journal of nuclear medicine and molecular imaging
IF:8.6Q1
DOI:10.1007/s00259-024-06649-2
PMID:38383744
|
研究论文 | 本研究旨在开发深度学习技术,以提高无镇静儿科PET成像的可行性 | 开发了一种基于245名成年受试者的可变形3D U-Net模型,用于增强模拟快速成像的质量,并在无镇静的儿科患者中进行了前瞻性测试 | 样本量相对较小,仅包括16名儿童进行回顾性测试和5名儿童进行前瞻性测试 | 提高无镇静儿科PET成像的可行性 | 儿童患者 | 数字病理 | NA | 深度学习 | 3D U-Net | PET图像 | 245名成年受试者,16名儿童进行回顾性测试,5名儿童进行前瞻性测试 |
7788 | 2025-02-22 |
Inference of Developmental Hierarchy and Functional States of Exhausted T Cells from Epigenetic Profiles with Deep Learning
2024-04-22, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.4c00261
PMID:38545680
|
研究论文 | 本研究介绍了一种基于深度神经网络的新型计算框架DeepEpiTEX,用于从表观遗传数据推断肿瘤微环境中耗竭T细胞的发育层次和功能状态 | 开发了DeepEpiTEX框架,首次利用多模态表观遗传数据(DNA甲基化、microRNA表达、长链非编码RNA表达)来推断耗竭T细胞的功能状态和发育层次,并发现了与免疫检查点阻断疗法反应的潜在关系 | 研究主要基于TCGA泛癌队列数据,虽然进行了外部验证,但仍需进一步在更大规模和多样化的数据集中验证其普适性 | 研究旨在通过表观遗传数据推断耗竭T细胞的功能状态和发育层次,以更好地理解肿瘤微环境中的T细胞异质性,并为个体化免疫治疗策略提供依据 | 耗竭T细胞(TEX) | 机器学习 | 癌症 | DNA甲基化测序、microRNA表达分析、长链非编码RNA表达分析 | 深度神经网络 | 表观遗传数据 | TCGA泛癌队列中的30种实体瘤类型 |
7789 | 2025-02-22 |
Structure-Based Protein Assembly Simulations Including Various Binding Sites and Conformations
2024-04-22, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.4c00212
PMID:38602938
|
研究论文 | 本文介绍了一种基于结构的快速计算模型GoCa,用于模拟大型多蛋白复合物的组装过程 | GoCa模型区分了亚基内和亚基间的相互作用,允许包含耦合折叠和结合,并自动处理复合物中相同亚基的排列,同时允许定义多个最小(天然)结构 | 模型依赖于已知的天然结构,可能不适用于未知结构的复合物 | 研究大型多蛋白复合物的组装过程 | 多蛋白复合物 | 计算生物学 | NA | 基于结构的计算模型 | GoCa | 蛋白质结构数据 | 多个多蛋白复合物 |
7790 | 2025-02-22 |
Spatial and Compositional Biomarkers in Tumor Microenvironment Predicts Clinical Outcomes in Triple-Negative Breast Cancer
2023-Dec-20, bioRxiv : the preprint server for biology
DOI:10.1101/2023.12.18.572234
PMID:38187696
|
研究论文 | 本文通过成像质谱流式细胞术和计算算法,研究了三阴性乳腺癌肿瘤微环境的空间和组成特征,以预测临床结果 | 首次在单细胞分辨率下量化三阴性乳腺癌肿瘤微环境的细胞分布模式和空间组织,并利用深度学习模型预测患者对治疗的反应 | 样本量较小(58例患者),且仅针对三阴性乳腺癌,可能限制了结果的普适性 | 探索三阴性乳腺癌肿瘤微环境的特征及其与临床结果的关系,以发现新的治疗靶点 | 三阴性乳腺癌患者的肿瘤微环境 | 数字病理学 | 乳腺癌 | 成像质谱流式细胞术,深度学习 | 深度学习模型 | 图像数据 | 58例三阴性乳腺癌患者样本 |
7791 | 2025-02-21 |
Severity grading of hypertensive retinopathy using hybrid deep learning architecture
2025-Apr, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2025.108585
PMID:39862474
|
研究论文 | 本文提出了一种混合深度学习架构,用于高血压视网膜病变(HR)的严重程度分级 | 引入了一种结合预训练ResNet-50和修改后的Vision Transformer(ViT)架构的混合模型,通过全局和局部自注意力机制增强模型性能,并提出了基于解耦表示和分类器(DRC)的训练方法以解决类别不平衡问题 | 缺乏公开可用的HR分级数据集,且存在高类别不平衡问题 | 开发一种准确的高血压视网膜病变严重程度分级方法 | 高血压视网膜病变(HR)的严重程度分级 | 计算机视觉 | 高血压视网膜病变 | 深度学习 | 混合模型(ResNet-50 + 修改后的Vision Transformer) | 图像 | NA |
7792 | 2025-02-21 |
Towards practical and privacy-preserving CNN inference service for cloud-based medical imaging analysis: A homomorphic encryption-based approach
2025-Apr, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2025.108599
PMID:39874935
|
研究论文 | 本文提出了一种基于同态加密的实用且保护隐私的CNN推理框架PPCNN,用于云端医学影像分析 | PPCNN框架结合了低扩展同态加密方案和基于噪声的掩码方法,通过优化计算成本、引入系数感知打包方法和数据掩码技术,显著提高了响应时间和降低了使用成本 | 现有隐私保护解决方案因卷积层内积操作的计算复杂性和非线性激活函数评估的高通信成本而存在显著的延迟问题,使得当前解决方案在实际应用中不切实际 | 解决移动云端医学影像分析中的隐私保护问题,确保用户在使用云端CNN模型分类私人放射影像时的数据隐私 | 私人身体相关的放射影像 | 数字病理 | NA | 同态加密 | CNN | 图像 | 三个真实世界的放射影像数据集 |
7793 | 2025-02-21 |
A bio-lattice deep learning framework for modeling discrete biological materials
2025-Apr, Journal of the mechanical behavior of biomedical materials
IF:3.3Q3
DOI:10.1016/j.jmbbm.2025.106900
PMID:39891961
|
研究论文 | 本文提出了一种基于机器学习的多尺度框架,结合深度神经网络(DNNs)、有限元方法(FEM)和受晶格弹簧模型(LSM)启发的微观结构描述,用于研究离散、空间异质材料的行为 | 提出了一种新颖的机器学习多尺度框架,结合DNNs、FEM和LSM,用于研究离散、空间异质材料的行为,并开发了一个无假设的晶格框架 | 未明确提及具体局限性 | 研究离散、空间异质材料的力学行为 | 生物组织的微观结构和宏观材料行为 | 机器学习 | NA | 深度神经网络(DNNs)、有限元方法(FEM)、晶格弹簧模型(LSM) | 深度神经网络(DNNs) | 微观结构数据 | NA |
7794 | 2025-02-21 |
ViroNia: LSTM based proteomics model for precise prediction of HCV
2025-Mar, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.109573
PMID:39733555
|
研究论文 | 本文介绍了ViroNia,一种基于LSTM的蛋白质组学模型,用于高精度预测HCV病毒蛋白分类 | ViroNia利用LSTM架构进行病毒蛋白分类,展示了其在分类任务中的高效性,并优于其他深度学习架构如Simple RNN、GRU、1d CNN和双向LSTM | 尽管ViroNia在分类任务中表现出色,但其在更广泛数据集上的泛化能力尚未验证 | 开发高精度的病毒蛋白分类模型,以支持病毒研究和干预设计 | HCV病毒蛋白 | 自然语言处理 | NA | LSTM | LSTM | 蛋白质序列 | 2250个蛋白质序列 |
7795 | 2025-02-21 |
Improved early detection accuracy for breast cancer using a deep learning framework in medical imaging
2025-Mar, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.109751
PMID:39884057
|
研究论文 | 本文提出了一种新的深度学习框架,用于提高乳腺癌早期检测的准确性 | 结合卷积神经网络(CNN)与特征选择和融合方法,自动从图像中学习并找到相关特征,从而超越现有方法 | 未提及具体的数据集大小或多样性限制 | 提高乳腺癌早期检测的准确性 | 乳腺癌的医学影像 | 计算机视觉 | 乳腺癌 | 深度学习 | CNN | 图像 | NA |
7796 | 2025-02-21 |
Deep learning image registration for cardiac motion estimation in adult and fetal echocardiography via a focus on anatomic plausibility and texture quality of warped image
2025-Mar, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.109719
PMID:39884059
|
研究论文 | 本文提出了一种深度学习图像配准方法,用于成人和胎儿超声心动图中的心脏运动估计,重点关注变形图像的解剖合理性和纹理质量 | 提出了一种新的深度学习图像配准框架,通过引入解剖形状编码约束和数据驱动的纹理约束,提高了变形图像的解剖合理性和纹理质量 | 尽管方法在成人和胎儿超声心动图中表现出色,但未提及在其他类型医学图像上的适用性 | 提高超声心动图中心脏运动估计的准确性和一致性 | 成人和胎儿超声心动图 | 计算机视觉 | 心血管疾病 | 深度学习图像配准(DLIR) | 深度学习模型 | 图像 | 多人口胎儿数据集和公共CAMUS成人数据集 |
7797 | 2025-02-21 |
A comparative study of statistical, radiomics, and deep learning feature extraction techniques for medical image classification in optical and radiological modalities
2025-Mar, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.109768
PMID:39891957
|
研究论文 | 本文比较了统计、放射组学和深度学习特征提取技术在医学图像分类中的应用效果 | 通过对比不同特征提取技术在多种医学影像模态下的表现,揭示了深度学习技术在准确性和速度上的优势 | 研究仅针对二分类问题,未涉及多分类或更复杂的医学图像分析任务 | 评估不同特征提取技术对医学图像分类模型性能的影响 | H&E染色图像、胸部X光片和视网膜OCT图像 | 计算机视觉 | NA | 统计特征提取、放射组学特征提取、深度学习特征提取 | PCA-LDA, ResNet50, DenseNet121 | 图像 | NA |
7798 | 2025-02-21 |
Atomic force microscopy combined with microfluidics for label-free sorting and automated nanomechanics of circulating tumor cells in liquid biopsy
2025-Feb-20, Nanoscale
IF:5.8Q1
DOI:10.1039/d4nr04033c
PMID:39865849
|
研究论文 | 本文介绍了一种结合原子力显微镜(AFM)和微流控技术的无标记分选和自动化纳米力学测量方法,用于液体活检中的循环肿瘤细胞(CTCs)研究 | 创新点在于结合AFM和微流控技术,实现了CTCs的无标记分选和自动化纳米力学测量,为临床提供了新的可能性 | 研究仍处于概念验证阶段,样本量有限,需要进一步验证和优化 | 研究目的是开发一种高效测量液体活检中CTCs机械性能的方法,以推动癌症管理 | 研究对象为液体活检中的循环肿瘤细胞(CTCs) | 数字病理学 | 癌症 | 原子力显微镜(AFM)、微流控技术、深度学习光学图像识别模型 | 深度学习模型 | 图像、力学数据 | 三个实验样本系统,包括不同大小的混合微球、不同类型癌细胞的混合物以及癌细胞和血细胞的混合物 |
7799 | 2025-02-21 |
Improved Assessment of Juxtacortical Lesions in Multiple Sclerosis Using Highly-accelerated High-resolution Double Inversion Recovery MR Imaging with Deep Learning-based Reconstruction
2025-Feb-20, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine
IF:2.5Q2
DOI:10.2463/mrms.mp.2024-0126
PMID:39971311
|
研究论文 | 本研究旨在使用深度学习重建技术(DLS)实现高分辨率双反转恢复(DIR)成像,并比较其在检测多发性硬化症(MS)皮质旁病变中的诊断性能与传统DIR(C-DIR)的差异 | 开发了一种新的基于深度学习的重建技术(DLS),用于重建高度欠采样的MR数据,并在检测MS皮质旁病变中表现出优于压缩感知的性能 | 研究样本量较小,仅包括25名MS患者 | 比较DLS-DIR和C-DIR在检测MS皮质旁病变中的诊断性能 | 25名多发性硬化症患者的MRI数据 | 医学影像 | 多发性硬化症 | 深度学习重建技术(DLS) | 深度学习 | MRI图像 | 25名多发性硬化症患者 |
7800 | 2025-02-21 |
Boosting 2D brain image registration via priors from large model
2025-Feb-20, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17696
PMID:39976314
|
研究论文 | 本文探讨了如何利用基础模型DINOv2的先验知识来支持基于学习的无监督配准网络,以提高2D脑图像配准的准确性 | 首次将基础模型DINOv2应用于医学图像配准任务,提出了三种DINOv2辅助配准模式,并研究了三种特征聚合方法在配准框架中的适用性 | 研究仅限于2D脑图像配准,未涉及3D或其他类型的医学图像 | 克服深度学习配准方法在有限数据集上的过拟合问题,提高配准精度和泛化能力 | 2D脑图像 | 计算机视觉 | NA | 深度学习 | DINOv2 | 图像 | IXI和OASIS公共数据集 |