深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 26514 篇文献,本页显示第 7801 - 7820 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
7801 2025-04-05
Deep Learning-Based Precontrast CT Parcellation for MRI-Free Brain Amyloid PET Quantification
2025-May-01, Clinical nuclear medicine IF:9.6Q1
研究论文 本研究开发了一种基于深度学习的CT脑区分割模型,用于无MRI依赖的淀粉样蛋白PET定量 首次提出利用深度学习直接从CT图像进行脑区分割,无需高分辨率MRI,实现了淀粉样蛋白PET的准确定量 研究基于回顾性数据,且样本量相对有限(226例) 开发不依赖MRI的淀粉样蛋白PET定量方法 轻度认知障碍或痴呆患者(157例)和健康对照者(69例) 数字病理学 老年痴呆症 PET/CT扫描 UNet CT和PET图像 226人(157例患者+69例对照)
7802 2025-04-05
Reconstructing historical climate fields with deep learning
2025-Apr-04, Science advances IF:11.7Q1
research paper 使用基于傅里叶卷积的深度学习方法重建历史气候场 提出了一种基于傅里叶卷积的深度学习方法,能够在大面积和不规则缺失数据的情况下,仅凭极少信息就能真实重建历史气候场,并重现已知历史事件 NA 填补历史气候记录的缺失数据,重建历史气候场 历史气候场数据 machine learning NA deep learning, Fourier convolutions CNN climate model output NA
7803 2025-04-05
Intelligent meningioma grading based on medical features
2025-Apr-04, Medical physics IF:3.2Q1
research paper 该研究提出了一种结合医学特征和深度神经网络的智能脑膜瘤分级方法 结合医学特征与SNN-Tran模型,提高了脑膜瘤分级的准确性和可靠性 医学特征的获取可能受限于影像质量和临床数据的完整性 验证医学特征与深度神经网络结合对脑膜瘤分级的有效性 脑膜瘤患者 digital pathology 脑膜瘤 SNN-Tran模型 SNN-Tran 医学特征(如肿瘤体积、瘤周水肿体积等) 未明确提及样本数量
7804 2025-04-05
Hypermetabolic pulmonary lesions detection and diagnosis based on PET/CT imaging and deep learning models
2025-Apr-04, European journal of nuclear medicine and molecular imaging IF:8.6Q1
研究论文 本研究开发并评估了基于PET/CT成像和深度学习模型的超代谢性肺部病变检测与分类方法 采用多维联合网络结合图像块和二维投影进行分类,性能优于传统放射组学方法 假阳性分割主要对应于邻近区域的可疑病变,特别是淋巴结 开发用于超代谢性肺部病变检测和分类的深度学习模型 超代谢性肺部病变(良性、肺癌、肺淋巴瘤和转移瘤) 数字病理学 肺癌 PET/CT成像 深度学习模型(多维联合网络) 医学影像(PET/CT) 647例(409男/238女),来自5个中心超过8年的数据
7805 2025-04-05
Interpretable multimodal deep learning model for predicting post-surgical international society of urological pathology grade in primary prostate cancer
2025-Apr-04, European journal of nuclear medicine and molecular imaging IF:8.6Q1
研究论文 开发了一种可解释的多模态深度学习模型,用于预测前列腺癌术后国际泌尿病理学会分级 整合了18F-PSMA-PET/CT成像特征与临床变量,构建了可解释的多模态融合模型,显著优于术前活检Gleason评分 研究为回顾性设计,样本量相对有限(222例患者) 提高前列腺癌病理分级的准确性,优化手术规划和个性化治疗策略 前列腺癌患者 数字病理 前列腺癌 18F-PSMA-PET/CT成像,深度迁移学习 多模态融合模型 医学影像(PET/CT),临床参数 222例前列腺癌患者(2020-2024年)
7806 2025-04-05
Towards Better Cephalometric Landmark Detection with Diffusion Data Generation
2025-Apr-03, IEEE transactions on medical imaging IF:8.9Q1
研究论文 本文提出了一种创新的数据生成方法,用于生成多样化的头颅X光图像及对应标注,以提高头颅标志点检测的准确性 开发了基于扩散模型的数据生成方法,无需人工干预即可生成多样化的头颅X光图像及标注,并引入了包含详细医学文本提示的数据集以控制生成样本的不同属性和风格 NA 提高头颅标志点检测的准确性,解决数据稀缺和标注成本高的问题 头颅X光图像及标志点 计算机视觉 正畸诊断 扩散模型 大规模视觉检测模型 图像 NA
7807 2025-04-05
Advancing Visual Perception Through VCANet-Crossover Osprey Algorithm: Integrating Visual Technologies
2025-Apr-03, Journal of imaging informatics in medicine
research paper 该研究提出了一种基于视觉核心适应网络和交叉鱼鹰算法的VCANet-COP模型,用于糖尿病视网膜病变的细微病变识别 VCANet-COP模型整合了稀疏自编码器和鱼鹰优化算法,模拟了人类视觉系统的多个处理区域,提高了病变检测的准确性和计算效率 虽然模型在多个数据集上表现优异,但未提及在临床实际应用中的验证情况 开发一种高效准确的自动化糖尿病视网膜病变筛查方法 糖尿病视网膜病变的细微病变识别 digital pathology diabetic retinopathy deep learning VCANet-COP (整合SAEs和OOA) retinal fundus images 多个DR数据集(DR-Data, STARE, IDRiD, DRIVE, RFMID)
7808 2025-04-05
Efficacy of a deep learning-based software for chest X-ray analysis in an emergency department
2025-Apr-03, Diagnostic and interventional imaging IF:4.9Q1
研究论文 本研究评估了基于深度学习的计算机辅助检测系统在急诊科胸部X光片异常检测中的效果 在急诊科环境中评估深度学习辅助系统对胸部X光片异常检测的敏感性提升,即使放射科医生可获得临床信息 研究为回顾性设计,样本量相对有限(404例) 评估深度学习辅助系统在急诊科胸部X光片异常检测中的效能 急诊科出现呼吸道症状患者的胸部X光片 数字病理 肺部疾病 深度学习 CAD系统(具体架构未说明) 医学影像(胸部X光片) 404例连续胸部X光片(含103例异常影像)
7809 2025-04-05
Soft sensor modeling using deep learning with maximum relevance and minimum redundancy for quality prediction of industrial processes
2025-Apr, ISA transactions IF:6.3Q1
研究论文 提出了一种基于最大相关和最小冗余的表示学习方法(MRMRRL),用于工业过程的质量预测 结合了质量相关特征提取、隐藏特征冗余减少和信息补偿三个通道的优点,显著提升了性能 未提及具体的工业过程类型或应用范围的局限性 提高工业过程质量预测的准确性和效率 工业过程的质量预测 机器学习 NA 自动编码器(AE)、堆叠自动编码器(SAE)、核主成分分析(KPCA) MRMRRL、SAE 工业过程数据 未提及具体样本数量
7810 2025-04-05
The current landscape of artificial intelligence in computational histopathology for cancer diagnosis
2025-Apr-01, Discover oncology IF:2.8Q2
综述 本文综述了2013年至2024年间人工智能在计算组织病理学中用于癌症诊断的关键方法和应用 涵盖了监督学习、无监督学习、弱监督学习和迁移学习等多种深度学习方法在组织病理学图像识别中的应用,并探讨了AI在识别基因突变和标准病理生物标志物方面的潜力 仅基于41项主要研究,可能未涵盖该领域所有最新进展 评估人工智能在计算组织病理学中用于癌症诊断和预后的应用现状 组织病理学图像 数字病理学 癌症 深度学习 NA 图像 41项主要研究
7811 2025-04-05
The potential of combined robust model predictive control and deep learning in enhancing control performance and adaptability in energy systems
2025-Apr-01, Scientific reports IF:3.8Q1
研究论文 本研究探讨了将鲁棒模型预测控制(RMPC)与深度学习相结合,以提升能源系统的性能和适应性 结合RMPC的鲁棒性与深度学习的学习和适应能力,提出了一种新型控制框架,显著提高了控制精度和运行效率 研究仅通过模拟验证,缺乏实际系统应用的验证 提升能源系统的控制性能和适应性 热电联产(CHP)、电力制氢和电力制甲烷等能源系统 机器学习 NA 鲁棒模型预测控制(RMPC)和深度学习 RMPC与深度学习模型 模拟数据 NA
7812 2025-04-05
Robust ensemble classifier for advanced synthetic aperture radar target classification in diverse operational conditions
2025-Apr-01, Scientific reports IF:3.8Q1
research paper 本文提出了一种增强的集成分类框架,用于合成孔径雷达(SAR)自动目标识别(ATR)在多样化操作条件下的应用 该方法整合了ResNet、SVM和模板匹配的优势,通过多数投票结合它们的互补能力,提高了分类准确性和鲁棒性 未提及具体的计算资源需求或处理时间,可能在实际应用中存在效率问题 提高SAR自动目标识别在多样化操作条件下的分类准确性和鲁棒性 合成孔径雷达(SAR)图像中的目标 computer vision NA ResNet, SVM, 模板匹配 ResNet, SVM SAR图像 使用MSTAR数据集进行实验验证
7813 2025-04-05
An adaptive search mechanism with convolutional learning networks for online social media text summarization and classification model
2025-Apr-01, Scientific reports IF:3.8Q1
研究论文 提出了一种基于自适应搜索机制和卷积学习网络的社交媒体文本摘要与分类模型(ASMHLN-SMDSCM) 结合BERT模型进行特征提取,采用蛾搜索算法(MSA)优化超参数,并使用TabNet+CNN模型进行分类 未提及模型在大规模数据集上的泛化能力或计算效率 开发高效的社交媒体文本摘要与分类方法 社交媒体短文本数据 自然语言处理 NA BERT, MSA, TabNet, CNN TabNet+CNN 文本 FIFA和FARMER数据集(具体数量未提及)
7814 2025-04-05
Graph convolution network for fraud detection in bitcoin transactions
2025-Apr-01, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于图卷积网络(GCN)的比特币交易欺诈检测方法 使用GCN模型检测比特币交易中的欺诈行为,相比现有模型如Logistic Regression、LSTM、SVM和Random Forest,表现出更高的准确性和性能 数据集中部分交易未标注,可能影响模型的训练效果 检测比特币交易中的非法活动,特别是反洗钱(AML) 比特币交易数据 机器学习 NA 图卷积网络(GCN) GCN 图数据 Elliptic比特币数据集,包含标记为合法和非法的交易
7815 2025-04-05
Building occupancy estimation using single channel CW radar and deep learning
2025-Apr-01, Scientific reports IF:3.8Q1
研究论文 本研究提出了一种基于24GHz连续波雷达和深度学习的新型室内人数估计方法,用于智能建筑的优化、能效提升和安全保障 采用连续波雷达系统结合时频映射技术(CWT和功率谱分析),提供了一种不依赖WiFi或PIR传感器的隐私保护替代方案 实验主要针对静态场景(久坐人员),动态场景(行走环境)的准确率相对较低(86.5%) 开发非侵入式、保护隐私的智能建筑人数估计方法 室内人员数量 机器学习 NA 24GHz连续波雷达、连续小波变换(CWT)、功率谱分析 DarkNet19、MobileNetV2、ResNet18 雷达回波生成的时频标度图 1680张图像样本(静态场景4小时40分钟数据)+ 1小时连续行走环境数据
7816 2025-04-05
Global trends in artificial intelligence applications in liver disease over seventeen years
2025-Mar-27, World journal of hepatology IF:2.5Q2
review 本文分析了17年来人工智能在肝病领域的应用趋势,总结了当前研究状况并识别了热点 通过文献计量学方法全面梳理了AI在肝病领域的研究热点和发展趋势 仅基于Web of Science数据库,可能遗漏其他重要文献 分析AI在肝病领域的研究现状和发展趋势 4051篇关于肝病和AI的研究文章 digital pathology liver disease 文献计量分析 machine learning, deep learning, CNN 文献数据 4051篇研究文章
7817 2025-04-05
MEF2C controls segment-specific gene regulatory networks that direct heart tube morphogenesis
2025-Mar-27, bioRxiv : the preprint server for biology
研究论文 本研究探讨了转录因子MEF2C在早期心脏形成中控制的基因调控网络(GRNs)及其对心脏管形态发生的影响 通过单核RNA和ATAC测序时间序列分析,揭示了MEF2C缺失导致的‘后化’心脏基因特征和染色质景观,并利用深度学习模型构建了心脏各段的发育轨迹 研究主要基于小鼠胚胎模型,结果在其他物种中的普适性需要进一步验证 解析早期心脏管形成过程中谱系特异性基因调控网络 野生型和MEF2C缺失胚胎的心脏发育过程 发育生物学 心脏发育异常 单核RNA测序(snRNA-seq)、ATAC测序、深度学习 深度学习模型 基因组数据、表观基因组数据 野生型和MEF2C缺失胚胎(具体数量未明确说明)
7818 2025-04-05
AGPred: An End-to-End Deep Learning Model to Predicting Drug Approvals in Clinical Trials Based on Molecular Features
2025-Mar-06, IEEE journal of biomedical and health informatics IF:6.7Q1
research paper 提出了一种基于深度学习的端到端模型AGPred,用于预测药物在临床试验中的批准率 采用基于注意力的图神经网络(GNN)自动学习药物分子表示,并结合交叉注意力融合模块学习分子指纹特征,整合药物的理化性质 未提及具体的数据集规模限制或模型泛化能力的局限性 提高药物临床试验批准率的预测准确性 药物分子 machine learning NA deep learning, GNN attention-based GNN molecular graphs, molecular fingerprints, physicochemical properties 未明确提及具体样本数量
7819 2025-04-05
Weakly Supervised Deep Learning Can Analyze Focal Liver Lesions in Contrast-Enhanced Ultrasound
2025-Mar-06, Digestion IF:3.0Q2
研究论文 本研究评估了弱监督深度学习模型在分类肝脏局灶性病变良恶性方面的性能 使用弱监督注意力机制的多实例学习算法,无需手动标注,仅使用病例标签进行训练 研究为回顾性研究,样本来自单一医疗机构 开发辅助诊断肝脏局灶性病变良恶性的AI算法 肝脏局灶性病变(FLLs)患者 数字病理 肝脏疾病 对比增强超声(CEUS) 注意力机制的多实例学习算法 图像 370名患者,共955,938张CEUS图像
7820 2025-04-05
Epicardial adipose tissue, myocardial remodelling and adverse outcomes in asymptomatic aortic stenosis: a post hoc analysis of a randomised controlled trial
2025-Mar-06, Heart (British Cardiac Society)
研究论文 本研究探讨了心外膜脂肪组织与无症状主动脉瓣狭窄患者的疾病严重程度、进展、心肌重塑和功能以及死亡率之间的关系 首次在心外膜脂肪组织与无症状主动脉瓣狭窄患者的疾病严重程度、进展及死亡率之间建立关联,并发现其与心肌健康受损的生物标志物相关 样本量较小(124例患者),且为事后分析,可能影响结果的普遍性 研究心外膜脂肪组织在主动脉瓣狭窄中的作用 无症状的轻度至重度主动脉瓣狭窄患者 心血管疾病 主动脉瓣狭窄 CT血管造影和深度学习软件 深度学习 医学影像和生物标志物数据 124例无症状主动脉瓣狭窄患者
回到顶部