深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 32372 篇文献,本页显示第 7841 - 7860 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
7841 2025-06-21
AI-Driven Detection and Measurement of Keratinized Gingiva in Dental Photographs: Validation Using Reference Retainers
2025-Jul, Journal of clinical periodontology IF:5.8Q1
研究论文 本文评估了一种深度学习模型在牙科照片中检测角化牙龈的能力,并使用参考保持器验证其临床适用性 首次提出能够可靠识别全口角化牙龈的AI模型,并通过参考保持器进行了全面验证 对后牙区域的预测需要进一步改进 评估深度学习模型在牙科照片中检测角化牙龈的准确性及其临床应用价值 角化牙龈的检测与测量 数字病理 牙科疾病 深度学习 DeepLabv3 with ResNet50 backbone 图像 32名受试者的576张六分照片 NA NA NA NA
7842 2025-06-21
Development and application of deep learning-based diagnostics for pathologic diagnosis of gastric endoscopic submucosal dissection specimens
2025-Jul, Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association IF:6.0Q1
研究论文 开发并评估了一种用于诊断胃内镜黏膜下剥离术(ESD)标本的深度学习模型 首次将深度学习模型应用于ESD标本的肿瘤和黏膜下浸润检测,显著提高了诊断效率和准确性 研究仅基于366个ESD标本,样本量相对有限 开发一种能够准确诊断胃ESD标本的深度学习模型 胃ESD标本中的腺癌组织 数字病理学 胃癌 深度学习 CNN 图像 366个ESD标本,包含2257个标注区域和83,839个图像块 NA NA NA NA
7843 2025-06-21
Deep learning-assisted detection of meniscus and anterior cruciate ligament combined tears in adult knee magnetic resonance imaging: a crossover study with arthroscopy correlation
2025-Jul, International orthopaedics IF:2.0Q2
研究论文 本研究比较了医生在使用和不使用深度学习模型辅助下,对膝关节MRI中半月板和前交叉韧带撕裂的诊断性能 使用深度学习模型辅助医生提高对膝关节MRI中半月板和前交叉韧带撕裂的诊断准确性 样本量相对较小(186例MRI检查),且仅评估了Keros®算法 比较医生在使用和不使用深度学习模型辅助下对膝关节MRI中半月板和前交叉韧带撕裂的诊断性能 膝关节MRI图像 数字病理 膝关节损伤 MRI 深度学习模型(Keros®算法) 图像 186例MRI检查(88例来自患者,98例来自公开数据库) NA NA NA NA
7844 2025-06-21
Radiomics for lung cancer diagnosis, management, and future prospects
2025-Jul, Clinical radiology IF:2.1Q2
综述 本文综述了放射组学在肺癌诊断和管理中的作用,探讨了从手工放射组学到深度学习技术的多种方法及其在肺癌护理各阶段的关键应用 强调了放射组学在提高诊断准确性、预测治疗反应和个性化患者护理方面的潜力,并探讨了未来整合大型语言模型、可解释AI和超分辨率成像技术的发展方向 NA 探讨放射组学在肺癌诊断和管理中的应用及其未来发展前景 肺癌 数字病理学 肺癌 放射组学、深度学习 AI模型 医学影像 NA NA NA NA NA
7845 2025-06-21
Breast tumour classification in DCE-MRI via cross-attention and discriminant correlation analysis enhanced feature fusion
2025-Jul, Clinical radiology IF:2.1Q2
研究论文 本文提出了一种基于动态对比增强磁共振成像(DCE-MRI)的乳腺肿瘤分类方法,通过融合深度特征和交叉注意力编码的放射组学特征,利用判别相关分析(DCA)提高分类准确性 提出了一种新颖的特征融合方法eFF-DCA,结合了深度特征和交叉注意力编码的放射组学特征,利用DCA优化特征相关性,提高了乳腺肿瘤分类的准确性 非端到端的设计限制了多模态特征的融合效果 开发并验证一种基于DCE-MRI的乳腺肿瘤分类方法,以提高良性和恶性肿瘤的鉴别诊断准确性 乳腺肿瘤 数字病理学 乳腺癌 DCE-MRI eFF-DCA 医学影像 261名个体,包括137个良性肿瘤和163个恶性肿瘤 NA NA NA NA
7846 2025-06-21
Deep-Learning-based Automated Identification of Ventriculoperitoneal-Shunt Valve Models from Skull X-rays
2025-Jun, Clinical neuroradiology IF:2.4Q2
research paper 该研究探讨了深度学习在颅骨X光片中自动识别脑室腹腔分流阀(VPS)模型的可行性 首次使用深度学习技术自动识别颅骨X光片中的VPS阀模型,实现了高准确率的分类 研究仅包含四种VPS阀模型,样本分布不均,且未在更广泛的数据集上进行验证 研究目的是探索人工智能(特别是深度学习)在颅骨X光片中自动识别VPS阀模型的能力 研究对象是颅骨X光片中的VPS阀模型 computer vision hydrocephalus deep learning CNN image 959张颅骨X光片,包含四种VPS阀模型(Codman Hakim 774张,Codman Certas Plus 117张,Sophysa Sophy Mini SM8 35张,proGAV 2.0 33张) NA NA NA NA
7847 2025-06-21
Predictors and Implications of Myocardial Injury in Intracerebral Hemorrhage
2025-Jun, Clinical neuroradiology IF:2.4Q2
研究论文 本研究评估了脑出血(ICH)患者心肌损伤的频率、预测因素及其影响 首次在脑出血患者中系统研究心肌损伤的发生率及其与预后的关系,并应用深度学习算法进行定量分析 回顾性研究设计可能影响结果的可靠性,样本量相对有限 评估脑出血患者心肌损伤的发生频率、预测因素及其临床意义 322名脑出血患者 数字病理学 心血管疾病 高敏感性心肌肌钙蛋白T(hs-cTnT)检测、深度学习算法、基于体素的病变症状映射(VLSM) 深度学习算法 医学影像数据、临床检测数据 322名脑出血患者 NA NA NA NA
7848 2025-06-21
Artificial intelligence in predicting EGFR mutations from whole slide images in lung Cancer: A systematic review and Meta-Analysis
2025-Jun, Lung cancer (Amsterdam, Netherlands)
meta-analysis 本文通过系统综述和荟萃分析评估了人工智能模型在预测肺癌患者全切片图像中EGFR突变状态的诊断准确性 首次系统评估AI模型在预测肺癌EGFR突变中的表现,并进行了荟萃分析 当前模型的准确性和精确度仍需进一步提高,且纳入分析的研究数量有限 评估AI模型在预测肺癌EGFR突变中的诊断准确性 肺癌患者的全切片图像 digital pathology lung cancer machine learning, deep learning ResNet image 16项研究(其中4项符合荟萃分析条件) NA NA NA NA
7849 2025-06-21
MRI-based multimodal AI model enables prediction of recurrence risk and adjuvant therapy in breast cancer
2025-Jun, Pharmacological research IF:9.1Q1
研究论文 本研究开发了一种基于MRI和多模态AI的3D深度学习模型(3D-MMR模型),用于预测非转移性乳腺癌患者的复发风险和辅助治疗效果 结合多模态MRI数据和AI技术,开发了3D-MMR模型,用于预测乳腺癌复发风险,并通过RNA-seq分析探讨肿瘤微环境与复发风险的关系 研究样本仅来自中国的四个机构,可能限制了模型的普遍适用性 预测非转移性乳腺癌患者的复发风险和辅助治疗效果 非转移性乳腺癌患者 数字病理 乳腺癌 MRI、RNA-seq 3D-UNet、DenseNet121 MRI图像、临床数据 1199名非转移性乳腺癌患者 NA NA NA NA
7850 2025-06-21
A deep learning model for predicting the outcome of persistent type 2 endoleaks after endovascular abdominal aortic aneurysm repair
2025-Jun, Acta chirurgica Belgica IF:0.6Q4
研究论文 本研究开发了一个深度学习模型,用于预测腹主动脉瘤腔内修复术后持续性2型内漏的结局 首次使用深度学习模型预测持续性2型内漏的结局,并通过可视化技术提高模型的可解释性 样本量较小(94例患者),且为单中心回顾性研究 预测腹主动脉瘤腔内修复术后持续性2型内漏的结局 94例持续性2型内漏患者 数字病理学 心血管疾病 深度学习 深度学习模型 图像 94例患者(75例训练集,19例测试集),10240张CT血管造影图像 NA NA NA NA
7851 2025-06-21
A new age in structural S-layer biology: Experimental and in silico milestones
2025-May-08, The Journal of biological chemistry IF:4.0Q2
综述 本文总结了过去五年在S层蛋白结构研究中的主要成就,并探讨了计算方法在S层蛋白建模中的最新突破 首次探讨了计算方法在S层蛋白建模中的应用及其对未来研究的潜在影响 主要关注过去五年的研究进展,可能未涵盖更早期的研究成果 总结S层蛋白结构研究的主要成就,并探索计算方法在该领域的应用 细菌和古菌中的S层蛋白 结构生物学 NA 高分辨率成像、深度学习结构预测 深度学习 蛋白质结构数据 多种细菌和古菌物种 NA NA NA NA
7852 2025-06-21
Deep Learning Approaches to Predict Geographic Atrophy Progression Using Three-Dimensional OCT Imaging
2025-Feb-03, Translational vision science & technology IF:2.6Q2
研究论文 评估不同三维光学相干断层扫描(OCT)图像处理方法在深度学习模型中预测地理萎缩(GA)病变区域及其未来增长率的效果 比较了四种不同的OCT图像处理方法在预测GA病变增长率和基线病变大小方面的性能,发现EZ和RPE层包含大部分预测相关信息 所有探索的方法在预测GA增长率方面性能相当,可能已达到性能瓶颈 评估3D OCT图像处理方法在预测GA病变进展中的效用 年龄相关性黄斑变性(AMD)引起的地理萎缩(GA)病变 数字病理学 年龄相关性黄斑变性 三维光学相干断层扫描(3D OCT) 3D CNN 三维医学影像 模型开发使用1219只研究眼,保留性能评估使用442只研究眼 NA NA NA NA
7853 2025-06-21
Artificial Intelligence in Pancreatic Imaging: A Systematic Review
2025-02, United European gastroenterology journal IF:5.8Q1
综述 本文系统回顾了人工智能在胰腺影像学中的应用及其技术进展、临床应用和挑战 探讨了深度学习技术(特别是CNN)在胰腺疾病检测、分割及良恶性病变区分中的应用,以及放射组学方法在提高深度学习模型准确性方面的作用 面临法律和伦理考虑、算法透明度和数据安全等挑战 评估人工智能在胰腺影像学中的诊断和治疗潜力 胰腺疾病(包括急慢性胰腺炎和胰腺肿瘤)的影像学数据 数字病理 胰腺癌 机器学习、深度学习、放射组学 CNN 影像数据(CT、MRI、内镜超声) NA NA NA NA NA
7854 2025-06-21
Automatic multimodal registration of cone-beam computed tomography and intraoral scans: a systematic review and meta-analysis
2025-Jan-29, Clinical oral investigations IF:3.1Q1
系统综述与荟萃分析 评估锥形束计算机断层扫描(CBCT)与口内扫描(IOS)自动多模态配准的最新进展及其在牙科中的临床意义 比较了几何方法与人工智能技术在配准中的表现,并指出AI方法在自动化和鲁棒性上的显著提升 未来研究需解决配准标志点不稳定或数据集多样性有限等挑战,以确保在复杂临床场景中的稳定性 评估CBCT与IOS自动多模态配准技术的效率与准确性 锥形束计算机断层扫描(CBCT)和口内扫描(IOS)数据 数字病理 牙科疾病 几何配准算法与AI驱动的深度学习模型 深度学习模型(未指定具体类型) 3D图像数据 22篇符合纳入标准的研究(共筛选493篇) NA NA NA NA
7855 2025-06-21
Transformers for Neuroimage Segmentation: Scoping Review
2025-Jan-29, Journal of medical Internet research IF:5.8Q1
综述 本文综述了当前关于使用transformer模型进行神经影像分割的研究,总结了相关文献并评估了各种transformer模型的应用 首次系统性地综述了transformer在神经影像分割领域的应用,并分析了混合CNN-transformer架构的优越性 计算成本高,在小数据集上容易过拟合,且研究主要依赖于脑肿瘤分割数据集,缺乏多样性 评估transformer模型在神经影像分割中的应用现状和效果 人类脑部影像数据 数字病理 脑肿瘤 MRI Transformer, CNN-transformer混合架构 影像 67篇符合纳入标准的研究论文 NA NA NA NA
7856 2025-06-21
Artificial intelligence methods applied to longitudinal data from electronic health records for prediction of cancer: a scoping review
2025-Jan-28, BMC medical research methodology IF:3.9Q1
综述 本文综述了利用人工智能方法从电子健康记录(EHRs)中的纵向数据预测癌症的研究现状,并提出了模型开发的建议 总结了当前利用纵向数据进行癌症预测的方法,并提出了改进模型开发的建议 90%的研究存在高偏倚风险,主要由于研究设计和样本量不当 总结和评估利用人工智能从电子健康记录中纵向数据预测癌症的方法 电子健康记录中的纵向数据 机器学习 癌症 特征工程和深度学习 RNN, CNN, transformers 电子健康记录数据 33项研究纳入综述 NA NA NA NA
7857 2025-06-21
Prediction of Anti-rheumatoid Arthritis Natural Products of Xanthocerais Lignum Based on LC-MS and Artificial Intelligence
2025, Combinatorial chemistry & high throughput screening IF:1.6Q3
研究论文 基于LC-MS和人工智能技术预测和筛选黄栌木中抗风湿性关节炎的活性化合物 结合LC-MS和AI技术,构建集成模型预测天然产物的抗RA活性,提高了预测的稳定性和准确性 研究仅针对黄栌木中的化合物,未涉及其他天然产物 寻找更有效且安全的天然产物用于治疗风湿性关节炎 黄栌木中的化合物 机器学习 风湿性关节炎 LC-MS, HPLC-Q-Exactive-MS 逻辑回归, k近邻, 支持向量机, 随机森林, XGBoost, GCN 质谱数据 69种已鉴定的黄栌木化合物 NA NA NA NA
7858 2025-06-21
Calibration-free estimation of field dependent aberrations for single molecule localization microscopy across large fields of view
2024-Dec-11, bioRxiv : the preprint server for biology
研究论文 本文提出了一种无需校准的方法,用于估计单分子定位显微镜在大视场中的场依赖性像差 引入基于模型的方法直接从单分子数据估计场依赖性像差,无需校准步骤,利用节点像差理论将场依赖性像差纳入全矢量PSF模型 NA 提高单分子定位显微镜在大视场中的定位精度和准确性 微管和核孔复合物的2D和3D定位数据 显微镜成像 NA 单分子定位显微镜(SMLM) 基于节点像差理论的PSF模型 2D和3D定位数据 视场范围达180 μm的微管和核孔复合物数据 NA NA NA NA
7859 2025-06-21
Focal liver lesion diagnosis with deep learning and multistage CT imaging
2024-Aug-15, Nature communications IF:14.7Q1
研究论文 本研究开发了一种基于深度学习和多期增强CT的自动诊断系统LiLNet,用于诊断肝脏病变 开发了Liver Lesion Network (LiLNet)系统,能够自动识别多种肝脏病变,并在多个外部中心验证了其高准确率 未提及系统在非典型病例或罕见肝脏病变中的表现 开发自动诊断系统以辅助肝脏病变的临床诊断 肝脏病变(包括HCC、ICC、MET、FNH、HEM和CYST) 数字病理 肝癌 多期增强CT成像 深度学习模型(LiLNet) CT图像 4039名患者来自六个数据中心,并在四个外部中心和两家医院进行验证 NA NA NA NA
7860 2025-06-21
Glenohumeral joint force prediction with deep learning
2024-01, Journal of biomechanics IF:2.4Q3
研究论文 本研究利用深度学习技术预测肩关节盂肱关节力的幅度和方向 使用深度学习模型替代传统的计算密集型优化技术,显著降低计算成本 研究基于虚拟受试者数据,未涉及真实临床患者验证 开发高效预测肩关节力的方法以改善关节功能和植入物耐久性评估 肩关节盂肱关节力 机器学习 骨科疾病 深度学习 DLM 生物力学参数 959名虚拟受试者 NA NA NA NA
回到顶部