深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 25390 篇文献,本页显示第 781 - 800 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
781 2025-05-20
Assessing fetal lung maturity: Integration of ultrasound radiomics and deep learning
2025-May-16, African journal of reproductive health IF:0.7Q4
研究论文 本研究通过结合放射组学和深度学习方法,构建了一个预测胎儿肺部成熟度的模型 整合放射组学特征和临床数据,利用深度学习方法提高胎儿肺部成熟度评估的准确性和可靠性 需要在不同的医疗环境中进行模型的验证和优化 提高胎儿肺部成熟度的预测水平,以改善产前护理和婴儿健康 263例妊娠期的超声图像 数字病理 胎儿肺部成熟度评估 超声成像,放射组学特征提取 DenseNet121 图像 263例妊娠期的超声图像
782 2025-05-20
Toward Ultralow-Power Neuromorphic Speech Enhancement With Spiking-FullSubNet
2025-May-15, IEEE transactions on neural networks and learning systems IF:10.2Q1
research paper 提出了一种基于脉冲神经网络的超低功耗语音增强系统Spiking-FullSubNet,用于提高边缘设备的语音清晰度和质量 采用全频带和子频带融合的方法有效捕捉全局和局部频谱信息,引入受人类外周听觉系统启发的频率分区方法,并提出一种新型脉冲神经元模型以增强多尺度时间处理能力 NA 开发超低功耗的语音增强系统,适用于边缘设备如耳机和助听器 语音信号 machine learning NA SNN Spiking-FullSubNet audio Intel Neuromorphic Deep Noise Suppression (N-DNS) Challenge数据集
783 2025-05-20
Bacterial identification in SERS-integrated microfluidics using CNN-driven 2D classification of 1D spectra
2025-May-15, Talanta IF:5.6Q1
research paper 该研究提出了一种结合SERS微流控技术和优化的2D-CNN用于细菌分类的新框架 首次探索了SERS光谱的2D表示方法在芯片上细菌识别中的应用,并系统评估了九种不同的1D到2D光谱转换方法 其他转换方法如成对距离和自相关表现低于93%,表明它们在捕捉细微光谱特征方面的能力有限 开发一种用于细菌识别的高效分析方法 细菌样本 machine learning NA SERS, 微流控技术 2D-CNN 光谱数据 控制数据集和芯片数据集
784 2025-05-20
Machine Learning-Based Multimodal Radiomics and Transcriptomics Models for Predicting Radiotherapy Sensitivity and Prognosis in Esophageal Cancer
2025-May-15, The Journal of biological chemistry IF:4.0Q2
研究论文 本研究整合了机器学习驱动的多模态放射组学和转录组学,开发了预测食管癌放疗敏感性和预后的模型 利用SEResNet101深度学习模型分析影像和转录组数据,鉴定预后相关基因,并构建预后风险模型,同时发现STUB1通过促进SRC的泛素化和降解增强放疗敏感性 NA 预测食管癌患者的放疗敏感性和预后,为个体化放疗计划提供依据 食管癌患者 机器学习 食管癌 RNA-seq SEResNet101 影像数据和转录组数据 来自UCSC Xena和TCGA数据库的数据
785 2025-05-20
A multi-layered defense against adversarial attacks in brain tumor classification using ensemble adversarial training and feature squeezing
2025-May-14, Scientific reports IF:3.8Q1
研究论文 本研究提出了一种多层防御策略,结合集成对抗训练和特征压缩技术,以提高脑肿瘤分类模型在对抗攻击下的鲁棒性 采用VGG16-based CNN模型,并结合对抗训练和特征压缩技术(如位深度降低和高斯模糊),有效提升了模型在对抗攻击下的准确率 在FGSM和PGD对抗样本上的准确率提升至54%和47%,但仍未达到原始干净数据的96%准确率 提高脑肿瘤分类模型在对抗攻击下的鲁棒性,确保AI在医学影像中的可靠性 脑肿瘤分类模型 计算机视觉 脑肿瘤 对抗训练(FGSM和PGD)、特征压缩技术(位深度降低和高斯模糊) VGG16-based CNN MRI图像 NA
786 2025-05-20
Catalytic mechanism and engineering of aromatic prenyltransferase: A review
2025-May-14, International journal of biological macromolecules IF:7.7Q1
review 本文综述了芳香族异戊二烯基转移酶的催化机制及其工程化研究的最新进展 提出了整合人工智能和深度学习的创新型工程化方法,以开发高性能生物催化剂 当前领域存在的未解决挑战包括催化活性不足、底物特异性狭窄以及多酶级联系统和固定化技术的限制 指导芳香族异戊二烯基转移酶在合成生物学和药物创新中的工程化及规模化应用 芳香族异戊二烯基转移酶及其催化机制 合成生物学 NA 蛋白工程策略、人工智能、深度学习 NA NA NA
787 2025-05-20
Diagnosis of thyroid cartilage invasion by laryngeal and hypopharyngeal cancers based on CT with deep learning
2025-May-13, European journal of radiology IF:3.2Q1
research paper 开发一个基于卷积神经网络(CNN)的模型,用于诊断喉癌和下咽癌在CT图像中对甲状腺软骨的侵犯,并评估模型的诊断性能 利用ResNet101进行迁移学习,开发新的CNN模型来分类甲状腺软骨侵犯状态,并与放射科医生的诊断性能进行比较 样本量较小(91例),且未进行外部验证 开发并评估一个基于深度学习的模型,用于诊断喉癌和下咽癌对甲状腺软骨的侵犯 喉癌和下咽癌患者的CT图像 digital pathology laryngeal and hypopharyngeal cancers CT imaging CNN (ResNet101) image 91例(61例训练集,30例测试集)
788 2025-05-20
Morphotype-resolved characterization of microalgal communities in a nutrient recovery process with ARTiMiS flow imaging microscopy
2025-May-13, Water research IF:11.4Q1
研究论文 利用流式成像显微镜(FIM)对微藻群落进行形态类型解析的特征描述,以优化废水处理中的营养回收过程 首次在全面规模的市政废水处理厂中,利用FIM技术(特别是ARTiMiS)实时监测微藻群落组成及其动态变化,并建立了水质化学、生物量组成与系统性能之间的关系 研究仅基于一个废水处理厂的数据,可能无法完全代表其他环境或条件下的微藻群落行为 优化微藻驱动的营养回收技术,提高磷的去除效率并降低处理成本 微藻群落,特别是Scenedesmus spp., Chlorella和Monoraphidium 环境生物技术 NA 流式成像显微镜(FIM),包括FlowCam和ARTiMiS CNN(卷积神经网络)和DNN(密集神经网络) 图像 为期两年的研究,涉及一个全面规模的市政废水处理厂的微藻群落
789 2025-05-20
Paradigm-Shifting Attention-based Hybrid View Learning for Enhanced Mammography Breast Cancer Classification with Multi-Scale and Multi-View Fusion
2025-May-12, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 提出了一种基于注意力的混合视图学习框架(AHVL),用于增强乳腺X光检查中的乳腺癌分类 结合了对比切换注意力(CSA)和选择性池化注意力(SPA)机制,解决了多尺度特征捕获和视图一致性与输入适应性平衡的问题 未提及具体局限性 提高乳腺X光检查中乳腺癌分类的准确性和鲁棒性 乳腺X光图像 计算机视觉 乳腺癌 深度学习 AHVL(基于注意力的混合视图学习框架) 图像 INbreast和CBIS-DDSM数据集
790 2025-05-20
Domain-separated capsule network for damage detection in aluminum plates under varying vibration conditions
2025-May-12, Ultrasonics IF:3.8Q1
研究论文 本文提出了一种域分离胶囊网络(DS-CapsNet),用于在不同振动条件下检测铝板中的损伤 结合胶囊网络与注意力机制,引入动态对抗因子优化特征对齐,增强模型鲁棒性 未提及具体样本量及实验环境多样性可能带来的限制 提高铝板损伤检测在振动环境变化下的准确性 2024铝合金板(飞机机翼/机身关键部件) 结构健康监测 NA 超声导波 DS-CapsNet(域分离胶囊网络) 振动信号数据 NA
791 2025-05-20
The impact of clinical history on the predictive performance of machine learning and deep learning models for renal complications of diabetes
2025-May-12, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 探讨临床历史数据对机器学习和深度学习模型预测糖尿病肾病并发症性能的影响 首次研究临床历史数据在预测糖尿病肾病并发症中的潜在作用,并开发了有效的预测模型 研究基于回顾性真实世界数据,可能存在选择偏倚 开发有效的预测模型,用于早期识别糖尿病肾病高风险患者 2型糖尿病患者 机器学习 糖尿病肾病 机器学习模型开发 逻辑回归、随机森林、Cox比例风险回归、RNN 临床数据 全国多中心回顾性真实世界研究数据
792 2025-05-20
Towards automated and reliable lung cancer detection in histopathological images using DY-FSPAN: A feature-summarized pyramidal attention network for explainable AI
2025-May-10, Computational biology and chemistry IF:2.6Q2
研究论文 本文提出了一种名为DY-FSPAN的深度学习框架,用于在组织病理学图像中实现可靠且自动化的肺癌检测 结合Y-blocks和注意力机制增强空间特征表示,同时保持感受野一致性,并通过Grad-CAM分析提高模型的可解释性 未提及具体的数据集规模限制或跨中心验证结果 开发一个平衡性能和可解释性的医学图像分类模型,以提高肺癌诊断的准确性 组织病理学图像中的肺癌检测 数字病理学 肺癌 深度学习 DY-FSPAN(基于Y-block的特征总结金字塔注意力网络) 图像 NA
793 2025-05-20
Classifying Obsessive-Compulsive Disorder from Resting-State EEG using Convolutional Neural Networks: A Pilot Study
2025-May-07, medRxiv : the preprint server for health sciences
研究论文 该研究探索了使用卷积神经网络(CNN)从静息态脑电图(EEG)中分类强迫症(OCD)的可行性 首次将CNN应用于最小预处理的EEG时频表示,显著提高了OCD与健康对照的分类准确率,并发现教育水平可作为补充特征提升分类性能 样本量较小(仅20名未用药受试者),需要在更大、更多样化的样本中进一步验证 开发基于深度学习的OCD诊断方法 强迫症患者与健康对照者的静息态EEG数据 机器学习 强迫症 Morlet小波时频变换 CNN, SVM EEG时频表示 20名未用药受试者(10名OCD患者,10名健康对照)
794 2025-05-20
A Bi-modal Temporal Segmentation Network for Automated Segmentation of Focal Liver Lesions in Dynamic Contrast-enhanced Ultrasound
2025-May, Ultrasound in medicine & biology
研究论文 开发并验证了一种基于深度学习的双模态时间分割网络(BTS-Net),用于动态对比增强超声(CEUS)视频中肝脏局灶性病变(FLL)的自动分割 提出了一种新型的双模态时间分割网络(BTS-Net),用于自动分割动态CEUS视频中的FLL,并在多个测试集中表现出色 研究为回顾性多中心研究,可能存在选择偏倚,且样本量相对较小(232例患者) 开发一种自动化的深度学习模型,用于动态CEUS视频中FLL的精确分割 肝脏局灶性病变(FLL)患者 数字病理学 肝癌 动态对比增强超声(CEUS) BTS-Net 视频 232例患者(160名男性,中位年龄56岁)
795 2025-05-20
Preliminary phantom study of four-dimensional computed tomographic angiography for renal artery mapping: Low-tube voltage and low-contrast volume imaging with deep learning-based reconstruction
2025-May, Radiography (London, England : 1995)
研究论文 本研究评估了低管电压和低对比剂用量的4D-CT血管造影(CTA)结合深度学习重建(DLR)在肾动脉栓塞中的可行性 结合DLR的4D-CTA技术可减少辐射和对比剂用量,同时保持诊断质量 需要进一步的临床验证以确认这些发现在临床环境中的适用性 评估低管电压和低对比剂用量的4D-CTA结合DLR在肾动脉栓塞中的可行性 模拟对比剂增强血管的定制模型 数字病理 肾脏疾病 4D-CT血管造影(CTA),深度学习重建(DLR) DLR 图像 定制模型(具体数量未提及)
796 2025-05-20
Devising a novel evaluation method for computed tomography images containing metal artifacts from titanium seed implants: Application to virtual monochromatic imaging energy optimization
2025-May, Radiography (London, England : 1995)
研究论文 本研究旨在开发一种新的评估方法,用于评估含钛种子植入物金属伪影的CT图像,并确定虚拟单色成像(VMI)的最佳能量水平以减少金属伪影并提高信号检测能力 提出了一种新的对比伪影比(CAR)评估方法,用于定量评估金属伪影对信号检测的影响,并确定了65 keV为VMI的最佳能量水平 研究仅针对钛种子植入物产生的金属伪影,未涉及其他金属材料 优化CT图像中金属伪影的减少和信号检测能力的提升 含钛种子植入物的CT图像 医学影像处理 前列腺癌 双能CT系统、深度学习(DL)、金属伪影减少(MAR)算法 NA CT图像 使用包含模拟放射性种子的骨盆区域体模进行研究
797 2025-05-20
Artificial intelligence in drug resistance management
2025-May, 3 Biotech IF:2.6Q3
综述 本文综述了人工智能(AI),特别是深度学习和机器学习(ML)在管理抗菌素耐药性(AMR)中的应用 AI模型如Naïve Bayes、决策树(DT)、随机森林(RF)、支持向量机(SVM)和人工神经网络(ANN)显著推进了耐药性模式的预测和新抗生素的识别 面临数据隐私、算法透明度、数据稀缺、伦理考虑及跨学科合作不足等挑战 探讨AI在管理抗菌素耐药性中的应用及其潜力 抗菌素耐药性(AMR) 机器学习 抗菌素耐药性 深度学习、机器学习 Naïve Bayes、DT、RF、SVM、ANN NA NA
798 2025-05-20
Reduction of radiation exposure in chest radiography using deep learning-based noise reduction processing: A phantom and retrospective clinical study
2025-May, Radiography (London, England : 1995)
研究论文 本研究评估了基于深度学习的智能降噪技术(INR)在平面胸部X光摄影中减少患者辐射剂量的效果 首次系统评估了INR技术在降低胸部X光辐射剂量同时保持图像质量的有效性 研究样本量有限(100例患者),且仅使用Canon公司的INR技术 评估INR技术在胸部X光摄影中降低辐射剂量的效果 胸部X光图像(包括Lungman体模和100例患者影像) 数字病理 肺癌 深度学习降噪技术(INR) 深度学习(具体架构未说明) 医学影像 100例患者胸部X光图像
799 2025-05-20
Low-cost video-based air quality estimation system using structured deep learning with selective state space modeling
2025-May, Environment international IF:10.3Q1
研究论文 提出了一种基于视频的低成本空气质量估计系统,结合结构化深度学习和选择性状态空间建模 首次将选择性状态空间模型(SSM)与选择性扫描机制和混合预测器(HP)结合,用于视频空气质量估计,能够动态调整参数并有效捕捉长距离依赖关系 研究仅基于巴基斯坦拉合尔六个监测站的数据,可能在其他地区的泛化能力有限 开发一种高效、成本效益高的模型,用于准确预测空气质量和主动污染控制 空气质量数据,特别是PM、PM和AQI 计算机视觉 NA 深度学习,选择性状态空间建模 AQP-Mamba(基于SSM的模型) 视频 13,176个视频,来自巴基斯坦拉合尔的六个监测站
800 2025-05-20
Robust automatic train pass-by detection combining deep learning and sound level analysis
2025-May-01, JASA express letters IF:1.2Q3
research paper 提出一种结合深度学习和声级分析的鲁棒自动列车通过检测方法 创新性地结合通用分类器、短声级分析和基于梅尔频谱图的分类来精确检测列车通过噪声 未提及方法在极端噪声环境下的性能表现 开发自动声音事件检测与分类方法以控制高噪声水平 列车通过时产生的噪声 machine learning NA mel-spectrogram-based classification, sound level analysis generic classifier (未指定具体模型) raw audio signal various long-term signals (未明确样本数量)
回到顶部