本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
781 | 2025-05-01 |
Artificial Intelligence Tools for Preconception Cardiomyopathy Screening Among Women of Reproductive Age
2025-Apr-29, Annals of family medicine
IF:4.4Q1
DOI:10.1370/afm.230627
PMID:40300816
|
研究论文 | 评估人工智能工具在育龄妇女中检测左心室收缩功能障碍(LVSD)的诊断性能 | 使用深度学习技术从12导联心电图和数字听诊器记录中生成LVSD的预测概率,展示了AI在心血管疾病筛查中的潜力 | 研究样本量较小(两个队列各100名参与者),且主要在非西班牙裔白人女性中进行,可能限制结果的普遍性 | 评估AI工具在育龄妇女中筛查心肌病的有效性 | 育龄妇女(18-49岁) | 数字病理学 | 心血管疾病 | 深度学习 | NA | 心电图(ECG)和听诊器记录 | 两个队列各100名参与者,总计200名育龄妇女 |
782 | 2025-05-01 |
Deep learning based automated left atrial segmentation and flow quantification of real time phase contrast MRI in patients with atrial fibrillation
2025-Apr-29, The international journal of cardiovascular imaging
DOI:10.1007/s10554-025-03407-9
PMID:40301204
|
research paper | 开发基于卷积神经网络(CNN)的全自动左心房(LA)流量量化方法,用于心房颤动(AF)患者的实时相位对比MRI数据分析 | 首次将CNN应用于AF患者的左心房流量全自动量化,表现出与半手动分析良好的一致性,并对心跳变异性具有鲁棒性 | 样本量相对较小(44名AF患者),且仅在AF患者中验证 | 开发自动化工具以简化心房颤动患者的心脏MRI数据分析流程 | 心房颤动患者的左心房流量数据 | digital pathology | cardiovascular disease | real time 2D phase contrast (RTPC) MRI | CNN | MRI图像 | 44名AF患者,共15,307个半手动标注的RTPC LA轮廓 |
783 | 2025-05-01 |
Low-Rank Fine-Tuning Meets Cross-modal Analysis: A Robust Framework for Age-Related Macular Degeneration Categorization
2025-Apr-29, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01513-7
PMID:40301288
|
研究论文 | 提出了一种创新的多模态深度学习框架,用于高效应用于多模态年龄相关性黄斑变性分类任务 | 引入了低秩适应(LoRA)技术以减少多模态集成的计算复杂性,并使用深度典型相关分析(DCCA)进行非线性映射和特征融合 | NA | 解决单模态信息不足以完全捕捉年龄相关性黄斑变性复杂病理特征的问题 | 年龄相关性黄斑变性(AMD)患者 | 计算机视觉 | 年龄相关性黄斑变性 | 深度典型相关分析(DCCA),低秩适应(LoRA) | Vision Transformer | 图像(CFP和OCT) | 公共数据集MMC-AMD |
784 | 2025-05-01 |
Attention-Based Dual-Path Deep Learning for Blood Cell Image Classification Using ConvNeXt and Swin Transformer
2025-Apr-29, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01479-6
PMID:40301289
|
研究论文 | 本文提出了一种基于注意力机制的双路径深度学习架构,结合ConvNeXt和Swin Transformer网络,用于血液细胞图像分类 | 创新性地结合了卷积神经网络和Transformer的优势,并引入了多尺度预处理模块(MPM)以提升图像质量 | 未提及模型在临床实际应用中的具体验证情况 | 提高血液细胞图像分类的准确性和效率,以辅助血液学疾病的诊断 | 血液细胞图像 | 计算机视觉 | 血液疾病 | 深度学习 | ConvNeXt, Swin Transformer | 图像 | 17,092张血液细胞图像 |
785 | 2025-05-01 |
Super-Resolution Deep Learning Reconstruction for T2*-Weighted Images: Improvement in Microbleed Lesion Detection and Image Quality
2025-Apr-29, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01522-6
PMID:40301290
|
research paper | 本研究评估了超分辨率深度学习重建(SR-DLR)在脑部MRI中检测微出血和提升图像质量的效果 | SR-DLR在微出血检测和图像清晰度方面显著优于传统DLR方法 | 研究为回顾性分析,样本量较小(69例患者) | 评估SR-DLR在脑部MRI中提升微出血检测和图像质量的效果 | 69例接受3T脑部MRI检查的患者(44名女性,平均年龄66.2岁) | digital pathology | 脑血管疾病 | 3T脑部MRI(T2*加权2D梯度回波和3D血流敏感黑血成像) | 深度学习超分辨率重建(SR-DLR) | MRI图像 | 69例患者 |
786 | 2025-05-01 |
A Dirichlet Distribution-Based Complex Ensemble Approach for Breast Cancer Classification from Ultrasound Images with Transfer Learning and Multiphase Spaced Repetition Method
2025-Apr-29, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01515-5
PMID:40301291
|
研究论文 | 提出了一种基于Dirichlet分布的复杂集成方法,结合迁移学习和多阶段间隔重复方法,用于从超声图像中进行乳腺癌分类 | 将教育科学中的间隔重复方法首次应用于人工智能领域,结合Dirichlet分布进行模型集成,提高了分类准确率和学习效率 | 研究仅使用了BUSI数据集,样本来源单一,需要更多外部数据验证模型的泛化能力 | 开发一种高精度的乳腺癌超声图像分类系统 | 乳腺癌超声图像 | 计算机视觉 | 乳腺癌 | 迁移学习、数据增强、间隔重复方法 | DenseNet201, InceptionV3, VGG16, ResNet152的集成模型 | 超声图像 | BUSI数据集(具体数量未提及) |
787 | 2025-05-01 |
Multimodal Masked Autoencoder Based on Adaptive Masking for Vitiligo Stage Classification
2025-Apr-29, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01521-7
PMID:40301294
|
研究论文 | 提出了一种基于自适应掩码的多模态掩码自编码器(Multi-MAE),用于白癜风分期分类 | 通过自适应掩码策略减少对标注多模态数据的依赖,并采用预训练策略缓解多模态数据稀缺问题 | 多模态数据标注困难且数据稀缺 | 提高白癜风分期的分类准确性 | 白癜风患者的临床图像和伍德灯图像 | 计算机视觉 | 白癜风 | 多模态图像分析 | Multimodal Masked Autoencoder (Multi-MAE) | 图像 | 未标注的皮肤病图像数据集 |
788 | 2025-05-01 |
BiaPy: accessible deep learning on bioimages
2025-Apr-29, Nature methods
IF:36.1Q1
DOI:10.1038/s41592-025-02699-y
PMID:40301624
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
789 | 2025-05-01 |
A Contrast-Enhanced Ultrasound Cine-Based Deep Learning Model for Predicting the Response of Advanced Hepatocellular Carcinoma to Hepatic Arterial Infusion Chemotherapy Combined With Systemic Therapies
2025-Apr-29, Cancer science
IF:4.5Q1
DOI:10.1111/cas.70089
PMID:40302359
|
research paper | 本研究开发了一种基于对比增强超声视频的深度学习模型AE-3DNet,用于预测晚期肝细胞癌患者对肝动脉灌注化疗联合系统治疗的响应 | 创新性地结合了时空注意力模块,增强了动态特征提取能力 | 研究为回顾性分析,可能存在选择偏倚 | 预测晚期肝细胞癌患者对联合治疗的响应,以改善治疗决策 | 晚期肝细胞癌患者 | digital pathology | liver cancer | contrast-enhanced ultrasound (CEUS) | AE-3DNet, 3DNet | video | 326名患者(内部验证队列243名,外部验证队列83名) |
790 | 2025-05-01 |
An Efficient Domain Knowledge-Guided Semantic Prediction Framework for Pathological Subtypes on the Basis of Radiological Images With Limited Annotations
2025-Apr-28, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2025.3558596
PMID:40293902
|
研究论文 | 提出一种基于有限标注的放射学图像病理亚型预测框架,结合领域知识引导的主动学习和半监督学习方法 | 通过三个关键模块(空间-语义特征提取、显性标志引导的锚点注意力和隐性放射组学引导的双任务纠缠模块)有效预测病理亚型,显著优于现有方法 | 需要临床领域知识的指导,可能在某些缺乏相关知识的场景中应用受限 | 提高基于有限标注的放射学图像的病理亚型预测准确性 | 胰腺神经内分泌肿瘤(pNENs)的病理分级预测和膀胱癌(BCa)的肌肉浸润性预测 | 数字病理 | 胰腺神经内分泌肿瘤和膀胱癌 | 深度学习和放射组学 | 深度学习框架(结合AL和SSL) | 放射学图像 | NA |
791 | 2025-05-01 |
A Deep Learning Approach for Nerve Injury Classification in Brachial Plexopathies Using Magnetic Resonance Neurography with Modified Hiking Optimization Algorithm
2025-Apr-28, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2025.04.004
PMID:40300994
|
研究论文 | 本研究提出了一种结合深度学习和改进的Hiking优化算法的AI框架,用于通过磁共振神经成像技术对臂丛神经病变中的神经损伤进行分类 | 结合深度学习和改进的Hiking优化算法(MHOA)以及综合学习技术(CL),提高了神经损伤分类的准确性 | 样本量较小(39名患者),可能影响模型的泛化能力 | 提高臂丛神经病变中神经损伤的分类准确性,减少诊断变异性 | 臂丛神经病变患者的神经损伤分类 | 医学影像分析 | 臂丛神经病变 | 磁共振神经成像(MRN) | MobileNetV4 | MRI序列(STIR、T2、T1、DWI) | 39名臂丛神经病变患者 |
792 | 2025-05-01 |
Renewable energy forecasting using optimized quantum temporal model based on Ninja optimization algorithm
2025-Apr-27, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-97109-w
PMID:40289143
|
研究论文 | 该研究利用优化的量子时间模型(QTM)和Ninja优化算法(NiOA)进行可再生能源预测,以提高预测性能 | 结合QTM和NiOA优化算法,显著提高了可再生能源预测的准确性和性能 | 未提及具体的数据集规模或实际应用场景的局限性 | 提高可再生能源预测的准确性和效率 | 可再生能源预测系统 | 机器学习 | NA | 深度学习 | QTM(量子时间模型) | 复杂的大规模数据集 | NA |
793 | 2025-05-01 |
The evaluation model of engineering practice teaching with complex network analytic hierarchy process based on deep learning
2025-Apr-27, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-99777-0
PMID:40289170
|
研究论文 | 本研究构建了一种基于物联网技术、复杂网络层次分析法和深度学习的工程实践教学评价模型,旨在提升高校工程实践教学质量管理效率 | 结合物联网技术、复杂网络层次分析法和深度学习(RNN和CNN)构建全新教学评价模型,并引入动态特性实现模型持续更新以适应教育环境变化 | 模型预测一致性存在波动(76-98%),且样本数据为模拟生成(500名学生),需进一步验证实际应用效果 | 优化高校工程实践教学质量评价体系 | 高校工程实践教学课程及学生表现数据 | 教育技术 | NA | NLP、GAN、复杂网络分析 | RNN、CNN | 课程文本数据、学生表现数据 | 10个专业的500名学生模拟数据 |
794 | 2025-05-01 |
Leveraging multi-source data and teleconnection indices for enhanced runoff prediction using coupled deep learning models
2025-Apr-27, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-00115-1
PMID:40289219
|
research paper | 本研究通过结合统计和深度学习方法,提出了两种创新的耦合模型SRA-SVR和SRA-MLPR,以提高径流预测的准确性和稳定性 | 结合了统计和深度学习方法的优势,利用逐步回归分析处理高维数据和多重共线性,同时整合了80个大气环流指数作为遥相关变量 | 研究仅以雅砻江流域为案例进行模型验证,未在其他流域进行广泛测试 | 提高中长期的径流预测准确性,以支持洪水控制、干旱恢复、水资源开发和生态改善 | 雅砻江流域的径流数据 | machine learning | NA | Stepwise Regression Analysis (SRA), Support Vector Regression (SVR), Multi-Layer Perceptron Regression (MLPR), SHAP analysis | SRA-SVR, SRA-MLPR | hydrological data, atmospheric circulation indices | 雅砻江流域的径流数据及80个大气环流指数 |
795 | 2025-05-01 |
Sweet pepper yield modeling via deep learning and selection of superior genotypes using GBLUP and MGIDI
2025-Apr-27, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-99779-y
PMID:40289216
|
研究论文 | 通过深度学习和GBLUP、MGIDI方法对甜椒产量进行建模并筛选优良基因型 | 结合卷积神经网络(CNN)模型与基因组最佳线性无偏预测(GBLUP)和多性状基因型-理想型距离指数(MGIDI),有效预测甜椒产量并筛选优良基因型 | 研究仅涉及29个甜椒种质,样本量较小 | 提高甜椒产量预测和优良基因型筛选的效率 | 甜椒(Capsicum annuum L.)种质 | 数字农业 | NA | ISSR标记、深度学习 | CNN、GBLUP、MGIDI | 形态性状数据、基因组数据 | 29个甜椒种质,每个种质3个重复 |
796 | 2025-05-01 |
General retinal image enhancement via reconstruction: Bridging distribution shifts using latent diffusion adaptors
2025-Apr-26, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2025.103603
PMID:40300379
|
研究论文 | 提出了一种通用的视网膜图像增强方法,通过分解为重建和适应阶段来提高泛化能力和灵活性 | 将增强任务分解为重建和适应阶段,利用自监督训练和预训练权重,提高了潜在扩散模型在视网膜图像增强中的可行性 | 方法在特定数据集和退化条件下的泛化能力仍有待进一步验证 | 提高视网膜图像增强的泛化能力和灵活性 | 视网膜图像 | 计算机视觉 | NA | 潜在扩散模型 | 自编码器和扩散网络 | 图像 | 未明确提及具体样本数量,但使用了大量公共数据集 |
797 | 2025-05-01 |
Using longitudinal data and deep learning models to enhance resource allocation in home-based medical care
2025-Apr-26, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2025.105953
PMID:40300486
|
研究论文 | 本研究利用纵向数据和深度学习模型优化家庭医疗资源分配 | 首次比较了三种深度学习模型(Transformer、LSTM和GRU)在家庭医疗阶段预测中的应用,并确定了最佳预测模型 | 研究数据仅来自台北市立医院,可能影响模型的泛化能力 | 探索人工智能在预测家庭医疗阶段中的应用,以优化医疗资源分配 | 4343名平均年龄85.04±11.47岁的患者 | 机器学习 | 老年病 | 深度学习 | Transformer, LSTM, GRU | 医疗记录数据 | 4343名患者的住院、门诊和家庭医疗记录(2015-2021年) |
798 | 2025-05-01 |
Predicting Short-Term Mortality in Patients With Acute Pulmonary Embolism With Deep Learning
2025-Apr-25, Circulation journal : official journal of the Japanese Circulation Society
IF:3.1Q2
DOI:10.1253/circj.CJ-24-0630
PMID:39617426
|
research paper | 开发了一种基于深度学习的多模态模型,用于预测急性肺栓塞患者的短期死亡率 | 提出了一种新型多模态深度学习模型(mmDL),结合影像学和临床/人口统计学数据,显著优于现有的PESI评分 | 样本量相对较小(207例患者),可能影响模型的泛化能力 | 优化急性肺栓塞患者的治疗策略并改善患者预后 | 急性肺栓塞患者 | digital pathology | cardiovascular disease | 对比增强多排计算机断层扫描 | CNN, Transformer | 影像数据、临床/人口统计学数据 | 207例急性肺栓塞患者(其中53例死亡) |
799 | 2025-05-01 |
[Cross-session motor imagery-electroencephalography decoding with Riemannian spatial filtering and domain adaptation]
2025-Apr-25, Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
DOI:10.7507/1001-5515.202411035
PMID:40288968
|
研究论文 | 本研究提出了一种结合黎曼空间滤波和领域自适应的方法(RSFDA),用于提高跨会话运动想象脑电信号(MI-EEG)分类的准确性和效率 | 通过多模块协作框架解决源域和目标域数据分布不一致的问题,提升了跨会话MI-EEG分类模型的泛化能力 | 在复杂迁移学习场景中的适用性仍需进一步研究 | 提高跨会话运动想象脑电信号(MI-EEG)分类的准确性和效率 | 运动想象脑电信号(MI-EEG) | 脑机接口技术 | NA | 黎曼空间滤波和领域自适应 | RSFDA | 脑电信号(EEG) | 三个公共数据集 |
800 | 2025-05-01 |
[Research progress in motor assessment of neurodegenerative diseases driven by motion capture data]
2025-Apr-25, Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
DOI:10.7507/1001-5515.202403004
PMID:40288984
|
review | 本文综述了基于运动捕捉数据的神经退行性疾病运动评估的最新研究进展 | 将神经退行性疾病运动评估方法按特征提取和处理方式分为三类,并比较分析了各类方法的技术要点和特点 | 未提及具体研究样本量及数据集的局限性 | 探讨神经退行性疾病运动评估的研究进展与发展趋势 | 神经退行性疾病患者的运动功能评估 | digital pathology | geriatric disease | motion capture | machine learning, deep learning | motion data | NA |