深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 25143 篇文献,本页显示第 781 - 800 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
781 2025-05-17
Integrated Multi-Omics and Whole Slide Images for Survival Prediction in Glioblastoma Using Multiple Instance Learning and Co-Attention
2024-Jul, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
研究论文 本研究旨在通过整合全切片图像和多组学数据,结合生物通路知识,利用多实例学习和共注意力机制,提高胶质母细胞瘤的生存预测准确性 首次将多组学数据与全切片图像结合,利用生物通路知识进行整合,并通过多实例学习和共注意力机制提高预测性能 研究样本量相对较小(214例患者),且仅使用了TCGA数据库的数据 提高胶质母细胞瘤(GBM)患者的生存预测准确性 胶质母细胞瘤患者 数字病理学 胶质母细胞瘤 RNA测序、拷贝数变异分析、DNA甲基化分析 多实例学习和共注意力机制 全切片图像和多组学数据 214例GBM患者,包括447张全切片图像和多种多组学特征
782 2025-05-17
Automatic COVID-19 Detection from Chest X-ray using Deep MobileNet Convolutional Neural Network
2024-Jul, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
research paper 该研究提出了一种基于深度迁移学习MobileNetV2模型的自动检测COVID-19的方法,通过胸部X光片(CXR)进行病毒检测 结合预训练的MobileNetV2 CNN模型和SVM分类器,提高了COVID-19检测的准确率,从基线模型的92.28%提升至93.2% NA 开发一种自动检测COVID-19的计算工具,以应对全球医疗系统的压力 胸部X光片(CXR)数据 computer vision lung cancer deep learning, transfer learning MobileNetV2, CNN, SVM image NA
783 2025-05-17
An updated compendium and reevaluation of the evidence for nuclear transcription factor occupancy over the mitochondrial genome
2024-Jun-06, bioRxiv : the preprint server for biology
研究论文 本文通过分析扩展的ENCODE TF ChIP-seq数据集和深度学习模型,创建了一个全面的核转录因子与线粒体基因组关联的汇编 利用扩展的ENCODE数据集和深度学习模型,首次全面汇编了核转录因子与线粒体基因组的关联证据 部分核转录因子的chrM占用证据在不同抗体和ChIP协议下不可重复 评估核转录因子在线粒体基因组上的占用证据 核转录因子与线粒体基因组的关联 基因组学 NA ChIP-seq, 深度学习 深度学习模型 基因组数据 6,153个ChIP实验,涉及942种蛋白质(其中763种为序列特异性TF)
784 2025-05-17
ProkDBP: Toward more precise identification of prokaryotic DNA binding proteins
2024-Jun, Protein science : a publication of the Protein Society IF:4.5Q1
研究论文 提出了一种名为ProkDBP的新型机器学习模型,用于更精确地预测原核DNA结合蛋白 ProkDBP模型结合了浅层学习算法和进化重要特征,显著提高了预测原核DNA结合蛋白的准确性 未提及具体样本量或数据集的详细构成 开发高精度的计算模型以预测原核DNA结合蛋白,促进原核生物学研究和疾病干预治疗的发展 原核DNA结合蛋白 机器学习 NA 随机森林变量重要性测量(RF-VIM), 光梯度提升机(LGBM) 浅层学习算法和深度学习模型 蛋白质序列数据 NA
785 2025-05-17
Accurate single-molecule spot detection for image-based spatial transcriptomics with weakly supervised deep learning
2024-May-15, Cell systems IF:9.0Q1
研究论文 本文提出了一种名为Polaris的分析流程,用于基于图像的空间转录组学数据,结合深度学习模型进行细胞分割和斑点检测,以及概率基因解码器来准确量化单细胞基因表达 Polaris提供了一个统一的、即插即用的解决方案,用于分析来自MERFISH、seqFISH或ISS实验的空间转录组学数据,减少了手动调整分析流程的复杂性 NA 开发一个自动化、高精度的分析流程,用于基于图像的空间转录组学数据 基于图像的空间转录组学数据 数字病理学 NA MERFISH, seqFISH, ISS 深度学习模型 图像 NA
786 2025-05-17
Graph neural networks for automatic extraction and labeling of the coronary artery tree in CT angiography
2024-May, Journal of medical imaging (Bellingham, Wash.)
research paper 提出了一种使用深度学习自动提取和标记冠状动脉树的完全自动方法 采用多分辨率图卷积神经网络结合几何和图像强度信息进行冠状动脉段标记 评估结果显示F1分数为0.74,仍有提升空间 实现冠状动脉疾病的自动全面报告 冠状动脉树 digital pathology cardiovascular disease CT angiography (CCTA) graph convolutional neural networks (GCN) image 104名患者的冠状动脉CT血管造影扫描
787 2025-05-17
Efficacy of artificial intelligence in reducing miss rates of GI adenomas, polyps, and sessile serrated lesions: a meta-analysis of randomized controlled trials
2024-May, Gastrointestinal endoscopy IF:6.7Q1
meta-analysis 该研究通过荟萃分析评估人工智能在降低胃肠道腺瘤、息肉和无蒂锯齿状病变漏诊率方面的效果 首次通过荟萃分析全面评估AI在多种胃肠道病变检测中的效果,证实AI可显著降低漏诊率 未观察到AI对晚期腺瘤检测效果的显著改善,且纳入研究数量有限(仅7项随机对照试验) 评估人工智能在胃肠道内窥镜检查中对病变检出率的改善效果 胃肠道腺瘤、息肉和无蒂锯齿状病变 digital pathology gastrointestinal disease AI-assisted endoscopic image analysis CNN endoscopic images 7项随机对照试验的汇总数据
788 2025-05-17
Geriatric depression and anxiety screening via deep learning using activity tracking and sleep data
2024-02, International journal of geriatric psychiatry IF:3.6Q1
研究论文 本研究探讨了使用深度学习模型通过活动追踪和睡眠数据筛查老年抑郁和焦虑的可行性 首次开发了基于活动追踪数据的混合输入深度学习模型,用于老年抑郁和焦虑的多标签识别 研究依赖于消费级腕戴活动追踪器的数据,可能存在数据质量和一致性问题 探索使用深度学习模型通过活动追踪数据识别老年抑郁和焦虑的可行性 老年抑郁和焦虑患者 机器学习 老年疾病 深度学习 CNN, LSTM, ResNet 时间序列数据(步数和睡眠阶段)和非时间序列数据(抑郁和焦虑评估分数) NA
789 2025-05-17
Scoping Review of Deep Learning Techniques for Diagnosis, Drug Discovery, and Vaccine Development in Leishmaniasis
2024, Transboundary and emerging diseases IF:3.5Q1
综述 本文对深度学习技术在利什曼病的诊断、药物发现和疫苗开发中的应用进行了范围综述 首次对深度学习在利什曼病领域的应用进行全面综述,填补了该领域的研究空白 仅对现有文献进行了分析,未进行新的实验验证 探讨深度学习技术在利什曼病领域的应用现状和未来发展方向 利什曼病的诊断、药物发现和疫苗开发 机器学习 利什曼病 深度学习 NA NA NA
790 2025-05-17
Deep Learning-Based Analysis of Glottal Attack and Offset Times in Adductor Laryngeal Dystonia
2023-Nov-15, Journal of voice : official journal of the Voice Foundation IF:2.5Q1
研究论文 本文开发了一种基于深度学习的自动化方法,用于测量声门攻击时间(GAT)和声门偏移时间(GOT),以辅助内收型喉肌张力障碍(AdLD)的诊断 首次使用深度学习框架自动分割声门区域并检测声带边缘,实现GAT和GOT的自动化测量 自动化测量与手动分析结果相比存在微小但不显著的差异 开发自动化测量方法以辅助AdLD的诊断 声带正常成年人和AdLD患者 数字病理学 喉肌张力障碍 高速视频内窥镜(HSV) 深度学习框架 视频 声带正常成年人和AdLD患者的HSV数据
791 2025-05-17
Applications of Artificial Intelligence in Choroid Visualization for Myopia: A Comprehensive Scoping Review
2023 Oct-Dec, Middle East African journal of ophthalmology IF:0.5Q4
综述 本文综述了人工智能在近视患者脉络膜可视化中的应用,特别是深度学习技术在光学相干断层扫描(OCT)图像中分割脉络膜的效果和角色 综合评估了多种AI模型在脉络膜分割中的诊断准确性,并探讨了其在近视诊断和管理中的潜力 需要进一步标准化AI方法,并扩大其在更广泛临床环境中的应用 评估人工智能在近视患者脉络膜可视化中的应用效果 近视患者 数字病理 近视 光学相干断层扫描(OCT) U-Net, LASSO回归, Attention-based Dense U-Net, ResNeSt101, Mask R-CNN 图像 12项研究,涉及不同近视程度的患者
792 2025-05-17
Deep Learning for Smartphone-Based Malaria Parasite Detection in Thick Blood Smears
2020-05, IEEE journal of biomedical and health informatics IF:6.7Q1
research paper 本研究开发了一种基于深度学习的智能手机应用,用于自动检测厚血涂片中的疟疾寄生虫 首次开发了能够在智能手机上运行的厚血涂片疟疾寄生虫检测深度学习方法,并公开了一个包含1819张厚血涂片图像的数据集 研究仅基于150名患者的数据集,可能需要更大规模的验证 开发智能手机上的自动疟疾寄生虫检测方法,以替代人工计数 厚血涂片中的疟疾寄生虫 digital pathology malaria deep learning CNN image 1819张厚血涂片图像来自150名患者
793 2025-05-17
A Systematic Review of Detecting Sleep Apnea Using Deep Learning
2019-Nov-12, Sensors (Basel, Switzerland)
系统综述 本文系统回顾了过去十年中利用深度学习检测睡眠呼吸暂停的研究 总结了深度学习在睡眠呼吸暂停检测中的应用,包括不同深度网络的实现方式、预处理或特征提取的需求,以及各类网络的优缺点 仅涵盖了2008年至2018年的研究,可能未包括最新的技术进展 分析过去十年中发表的关于使用深度学习检测睡眠呼吸暂停的研究,回答如何实现不同的深度网络、需要何种预处理或特征提取,以及各类网络的优缺点等问题 睡眠呼吸暂停检测的深度学习研究 机器学习 睡眠呼吸暂停 深度学习 深度网络 生理信号数据 255篇论文中筛选出21篇符合标准的研究
794 2025-05-16
Impact of deep learning reconstruction on radiation dose reduction and cancer risk in CT examinations: a real-world clinical analysis
2025-Jun, European radiology IF:4.7Q1
research paper 本研究评估了深度学习重建(DLR)在CT检查中降低辐射剂量和癌症风险的实际效果 首次利用真实世界临床数据分析DLR对辐射诱发癌症风险的影响 研究为单中心回顾性分析,可能存在选择偏倚 评估DLR技术对CT检查辐射剂量和癌症风险的降低效果 接受全身CT检查的成年患者 medical imaging radiation-induced cancer deep learning reconstruction (DLR) NA CT scan data 5247 matched cases (pre-DLR) + 5247 matched cases (post-DLR)
795 2024-12-12
Evaluating deep learning and radiologist performance in volumetric prostate cancer analysis with biparametric MRI and histopathologically mapped slides
2025-Jun, Abdominal radiology (New York)
NA NA NA NA NA NA NA NA NA NA NA NA
796 2025-05-16
Evaluation of a deep learning prostate cancer detection system on biparametric MRI against radiological reading
2025-Jun, European radiology IF:4.7Q1
研究论文 本研究评估了一种基于双参数MRI的深度学习系统在检测临床显著性前列腺癌方面的性能,并与放射学解读进行了比较 开发了一个3D nnU-Net模型用于前列腺癌检测,在独立测试队列中表现优于放射科医生,特别是在中等和大尺寸病灶检测上 对小病灶的检测仍然具有挑战性 评估深度学习系统在前列腺癌检测中的性能 临床显著性前列腺癌(csPCa),定义为Gleason Grade Group (GGG) ≥ 2 数字病理 前列腺癌 双参数MRI(bpMRI) 3D nnU-Net 医学影像 训练集4381例bpMRI病例(3800阳性,581阴性),测试集328例来自PROSTATEx数据集
797 2025-05-16
MRI-derived deep learning models for predicting 1p/19q codeletion status in glioma patients: a systematic review and meta-analysis of diagnostic test accuracy studies
2025-May-15, Neuroradiology IF:2.4Q2
meta-analysis 本文通过系统综述和荟萃分析评估了基于MRI的深度学习模型在预测胶质瘤患者1p/19q共缺失状态中的表现 首次对MRI衍生的深度学习模型在预测胶质瘤1p/19q共缺失状态中的诊断准确性进行了系统评价和荟萃分析 纳入研究的质量参差不齐,仅有两项研究质量较低,且存在显著的异质性 评估MRI衍生的深度学习模型在预测胶质瘤1p/19q共缺失状态中的诊断准确性 胶质瘤患者 digital pathology glioma MRI DL image 20项研究纳入系统综述,其中10项研究进行了荟萃分析
798 2025-05-16
Trends and Gaps in Public Perception of Genetic Testing for Dementia Risk: Unsupervised Deep Learning of Twitter Posts From 2010 to 2023
2025-May-15, Alzheimer disease and associated disorders
研究论文 利用Twitter数据分析公众对痴呆症基因检测的看法 使用BERT模型和主题建模分析Twitter数据,揭示公众对痴呆症基因检测的认知趋势和误区 研究仅基于Twitter数据,可能无法全面代表所有公众观点 分析公众对痴呆症基因检测的认知和态度 2010年至2023年期间包含相关关键词的英文推文 自然语言处理 老年疾病 BERT模型, NER, 主题建模 BERT 文本 3045条原始/来源推文
799 2025-05-16
The Lack of Neurofeedback Training Regulation Guidance and Process Evaluation May be a Source of Controversy in Post-Traumatic Stress Disorder-Neurofeedback Research: A Systematic Review and Statistical Analysis
2025-May-15, Brain connectivity IF:2.4Q3
系统性综述 本文对创伤后应激障碍(PTSD)神经反馈(NF)研究进行了系统性综述和统计分析,探讨了现有研究的不足并提出了改进方向 首次对PTSD-NF研究进行了全面的统计分析和分类,提出了改进NF过程评估机制和调制指导的建议 研究仅纳入了31项原始研究,样本量较小(EEG-NF平均17.4人,fMRI-NF平均14.6人),且缺乏深度学习方法的运用 探讨PTSD-NF研究中存在的问题并提出改进方向 创伤后应激障碍(PTSD)患者 脑机接口 创伤后应激障碍 脑电图神经反馈(EEG-NF)和功能磁共振成像神经反馈(fMRI-NF) 传统统计方法和基础机器学习方法 神经信号数据 EEG-NF研究平均17.4人(SD 7.13),fMRI-NF研究平均14.6人(SD 6.37)
800 2025-05-16
Deep Learning-Assisted 3D Pressure Sensors for Control of Unmanned Aerial Vehicles
2025-May-15, ACS applied materials & interfaces IF:8.3Q1
研究论文 本文介绍了一种利用多层微结构复合薄膜压阻传感阵列和深度学习技术的可穿戴智能手势识别控制系统,用于无人机的实时控制 结合了高灵敏度压阻传感阵列和CNN深度学习技术,实现了97.5%的手势识别准确率,并开发了直观的用户界面进行实时飞行高度和视频监控显示 未提及系统在复杂环境下的稳定性测试或长期使用可靠性评估 开发高精度实时手势识别系统以改善人机交互体验 人体手势动作识别与无人机控制 机器人与人机交互 NA 深度学习与压阻传感技术 CNN 压力传感数据与视频数据 未明确说明实验样本量
回到顶部