深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24517 篇文献,本页显示第 8001 - 8020 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
8001 2025-02-09
Evolving the pulmonary nodules diagnosis from classical approaches to deep learning-aided decision support: three decades' development course and future prospect
2020-Jan, Journal of cancer research and clinical oncology IF:2.7Q3
综述 本文综述了过去三十年计算机辅助肺结节诊断技术的发展,从传统方法到深度学习辅助决策支持的演变 首次对过去30年计算机辅助肺结节诊断技术的发展进行文献综述,并识别了挑战和未来研究方向 缺乏对技术发展的全面审查,特别是从传统方法到机器学习辅助决策支持的演变 提供计算机辅助肺结节检测和良恶性分类技术的全面最新综述,并识别未来研究方向 肺结节的计算机辅助诊断 计算机视觉 肺癌 深度学习 NA 图像 NA
8002 2025-02-08
Attention-enhanced corn disease diagnosis using few-shot learning and VGG16
2025-Jun, MethodsX IF:1.6Q2
研究论文 本文提出了一种基于注意力机制和少样本学习的玉米病害诊断方法,使用预训练的VGG16卷积神经网络进行微调,并在玉米病害数据集上实现了98.25%的分类准确率 结合注意力机制和少样本学习,减少了模型对大规模标注数据的依赖,适用于实际农业应用 未提及模型在其他作物病害上的泛化能力 开发一种高效且准确的玉米病害早期诊断方法 玉米病害 计算机视觉 植物病害 少样本学习 VGG16 图像 未明确提及样本数量
8003 2025-02-08
Using deep learning for ultrasound images to diagnose chronic lateral ankle instability with high accuracy
2025-Apr, Asia-Pacific journal of sports medicine, arthroscopy, rehabilitation and technology
研究论文 本研究旨在通过深度学习技术,利用超声图像对慢性外侧踝关节不稳(CLAI)进行高精度诊断 首次将深度学习应用于超声图像,用于慢性外侧踝关节不稳的诊断,并展示了高准确率和AUC值 样本量较小,仅包括60个踝关节(30个对照组和30个损伤组) 计算慢性外侧踝关节不稳的诊断准确率 慢性外侧踝关节不稳患者和无踝关节扭伤史的对照组 计算机视觉 踝关节疾病 深度学习 预训练深度学习模型 超声图像 60个踝关节(30个对照组和30个损伤组),共4000张图像
8004 2024-08-07
Editorial for "Deep Learning Assisted Classification of T1ρ-MR Based Intervertebral Disc Degeneration Phases"
2025-Mar, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
NA NA NA NA NA NA NA NA NA NA NA NA
8005 2025-02-08
Role of artificial intelligence in treatment planning and outcome prediction of jaw corrective surgeries by using 3-D imaging: a systematic review
2025-Mar, Oral surgery, oral medicine, oral pathology and oral radiology
系统综述 本文系统综述了人工智能在利用3D成像进行颌骨矫正手术的治疗计划和结果预测中的应用 探讨了人工智能在颌骨矫正手术中的治疗计划和结果预测方面的应用,填补了该领域的研究空白 由于研究间的显著异质性和数据报告不足,未进行荟萃分析 评估人工智能在颌骨矫正手术中的治疗计划和结果预测中的作用 颌骨矫正手术 数字病理 NA 3D成像 深度学习算法, 机器学习 CT数据 14项研究
8006 2025-02-08
Predicting craniofacial fibrous dysplasia growth status: an exploratory study of a hybrid radiomics and deep learning model based on computed tomography images
2025-Mar, Oral surgery, oral medicine, oral pathology and oral radiology
研究论文 本研究旨在开发基于CT图像的三种模型,用于区分颅面纤维性发育不良(CFD)患者的病变进展状态 结合了放射组学和深度学习的混合模型(Model Rad+DL),在评估CFD病变进展方面表现出优越性 研究为回顾性分析,样本量有限(148例患者) 开发并评估基于CT图像的模型,以区分CFD患者的病变进展状态 148名CFD患者的术前CT扫描图像 数字病理学 颅面纤维性发育不良 3D-Slicer软件用于图像分割和特征提取 混合模型(放射组学和深度学习) CT图像 148名CFD患者
8007 2025-02-08
Evaluation of GPT-4 concordance with north American spine society guidelines for lumbar fusion surgery
2025-Mar, North American Spine Society journal
研究论文 本文评估了GPT-4与北美脊柱协会(NASS)腰椎融合手术指南的一致性 首次评估GPT-4在腰椎融合手术临床决策中的一致性,探索AI在脊柱手术实践中的潜在应用 研究样本量较小,仅包含17个临床案例,且仅限于NASS指南的特定场景 评估GPT-4在腰椎融合手术临床决策中的一致性,探索AI在脊柱手术中的应用潜力 17个基于NASS标准的腰椎融合手术临床案例 自然语言处理 脊柱疾病 GPT-4 深度学习模型 文本 17个临床案例
8008 2025-02-08
Editorial for "Multiparametric MRI-Based Deep Learning Radiomics Model for Assessing 5-Year Recurrence Risk in Non-Muscle Invasive Bladder Cancer"
2025-Mar, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
NA NA NA NA NA NA NA NA NA NA NA NA
8009 2025-02-08
A joint three-plane physics-constrained deep learning based polynomial fitting approach for MR electrical properties tomography
2025-Feb-15, NeuroImage IF:4.7Q1
研究论文 本文提出了一种结合物理约束和深度学习的多项式拟合方法,用于磁共振电特性成像,以提高电导率估计的准确性和计算效率 结合物理约束的深度学习框架,通过在三平面上联合优化神经网络权重,提高了电导率估计的准确性和计算效率 需要大量的训练数据,且对未见数据的泛化能力有限 提高磁共振电特性成像中电导率估计的准确性和计算效率 体内组织的电特性 数字病理 NA 磁共振电特性成像 深度学习 3D数据 模拟的异质脑模型
8010 2025-02-08
A novel deep learning framework for retinal disease detection leveraging contextual and local features cues from retinal images
2025-Feb-07, Medical & biological engineering & computing IF:2.6Q3
研究论文 本文提出了一种新的深度学习框架,用于从视网膜图像中提取上下文和局部特征线索,以准确分类视网膜疾病 提出了一种结合全局上下文信息和局部细粒度信息的深度学习框架,通过DCM-CNN和LP-CNN模块的协同工作,克服了眼底图像中的类间相似性、类内变异、局部信息有限等挑战 NA 提高视网膜疾病的自动诊断准确性 视网膜图像 计算机视觉 视网膜疾病 深度学习 Densely Connected Multidilated Convolution Neural Network (DCM-CNN), Local-Patch-based Convolution Neural Network (LP-CNN) 图像 两个公开的基准数据集:RFMiD和ODIR-5K
8011 2025-02-08
Evaluation of deep learning-based scatter correction on a long-axial field-of-view PET scanner
2025-Feb-07, European journal of nuclear medicine and molecular imaging IF:8.6Q1
研究论文 本文评估了基于深度学习的散射校正方法在长轴视野PET扫描仪上的性能 提出了一种基于卷积神经网络U-Net架构的深度学习方法,用于估计散射正弦图,并在长轴视野PET系统上进行了评估 尽管在[18F]-PSMA数据集上表现一致,但该方法未使用[18F]-PSMA数据进行训练 评估深度学习方法在长轴视野PET系统上的散射校正性能 长轴视野PET系统的散射校正 医学影像 NA 深度学习,蒙特卡罗模拟 CNN U-Net 正弦图,图像数据 7个[18F]-FDG和[18F]-PSMA临床数据集
8012 2025-02-08
Comparison of data augmentation and classification algorithms based on plastic spectroscopy
2025-Feb-06, Analytical methods : advancing methods and applications IF:2.7Q1
研究论文 本文提出了一种基于C-GAN的塑料光谱生成模型,并通过数据增强方法系统分析和比较了不同分类算法在塑料光谱数据上的性能 提出了一种基于C-GAN的塑料光谱生成模型,有效解决了样本不足的问题,并通过多种方法验证了生成光谱的真实性 数据样本的收集仍然存在挑战,且不同光谱设备的化学分类特征解释可能有限 通过数据增强和分类算法比较,提高塑料光谱数据的分类准确性 塑料光谱数据 机器学习 NA 傅里叶变换红外光谱(FTIR)、拉曼光谱(RAMAN)、激光诱导击穿光谱(LIBS) C-GAN、SVM、BP、KNN、RF、DT、GoogleNet、ResNet 光谱数据 公共数据集中的塑料光谱数据
8013 2024-12-21
Correction to: A review of multimodal deep learning methods for genomic-enabled prediction in plant breeding
2025-Feb-05, Genetics IF:3.3Q2
NA NA NA NA NA NA NA NA NA NA NA NA
8014 2025-02-08
MtCro: multi-task deep learning framework improves multi-trait genomic prediction of crops
2025-Feb-05, Plant methods IF:4.7Q1
研究论文 本文介绍了一种名为MtCro的多任务深度学习框架,用于提高作物多性状基因组预测的准确性 MtCro通过多任务学习方法,在共享参数空间中同时捕捉多种植物表型,解决了现有深度学习模型忽视不同表型间相关性的问题 NA 提高作物多性状基因组预测的准确性,加速植物遗传育种进程 作物基因组数据 机器学习 NA 深度学习 多任务学习 基因组数据 Wheat2000、Wheat599和Maize8652数据集
8015 2025-02-08
UniLF: A novel short-term load forecasting model uniformly considering various features from multivariate load data
2025-Feb-04, Scientific reports IF:3.8Q1
研究论文 本文提出了一种新的短期负荷预测模型UniLF,该模型统一考虑了多元负荷数据的多种特征,以提高预测精度 UniLF模型基于Transformer框架,设计了卷积增强融合嵌入方法、特征重构分解块和核心掩码引导的多尺度交互自注意力机制,以全面利用多元负荷数据的三个特征:协变量的影响、多尺度特征和局部-全局变化 NA 提高短期负荷预测的准确性,以支持电力系统的经济和稳定运行 多元负荷数据 机器学习 NA 深度学习 Transformer 多元负荷数据 来自澳大利亚、巴拿马和奥地利的三个负荷数据集
8016 2025-02-06
Author Correction: Sentiment analysis of the Hamas-Israel war on YouTube comments using deep learning
2025-Feb-04, Scientific reports IF:3.8Q1
NA NA NA NA NA NA NA NA NA NA NA NA
8017 2025-02-08
Ensemble of feature augmented convolutional neural network and deep autoencoder for efficient detection of network attacks
2025-Feb-04, Scientific reports IF:3.8Q1
研究论文 本文提出了一种新颖的深度学习技术集成方法,以提高网络入侵检测系统(NIDS)中数据包流分类的效率 提出了一种集成特征增强卷积神经网络(FA-CNN)和深度自编码器的新方法,用于网络攻击检测 NA 提高网络入侵检测系统中数据包流分类的效率和准确性 网络流量数据 机器学习 NA 深度学习 CNN, 深度自编码器 网络流量数据 使用NSL-KDD和CICDS2017基准数据集进行实验
8018 2025-02-06
Author Correction: Synthetic augmentation of cancer cell line multi-omic datasets using unsupervised deep learning
2025-Feb-04, Nature communications IF:14.7Q1
NA NA NA NA NA NA NA NA NA NA NA NA
8019 2025-02-08
Using deep learning model integration to build a smart railway traffic safety monitoring system
2025-Feb-04, Scientific reports IF:3.8Q1
研究论文 本研究旨在通过集成目标检测、分割、机器学习和通知系统,构建一个智能铁路交通安全系统 结合Mask R-CNN、YOLO v3和XGBoost模型,以及LINE bot通知系统,实现了铁路安全的智能监控 未提及系统的实时性能评估和长期稳定性测试 构建一个智能铁路交通安全监控系统,以预防相关事故 铁路交通安全监控 计算机视觉 NA 目标检测、分割、机器学习 Mask R-CNN, YOLO v3, XGBoost 图像 未明确提及样本数量
8020 2025-02-08
Enabling high-throughput quantitative wood anatomy through a dedicated pipeline
2025-Feb-04, Plant methods IF:4.7Q1
研究论文 本文介绍了一种半自动化的高通量管道,用于样本制备、千兆像素成像和分析木材端面解剖结构 提出了一种结合协作机器人、定制开源千兆像素成像系统和深度学习分析的全新半自动化管道,显著提高了木材解剖结构的分析效率和精度 目前仅展示了在榉木样本上的应用,尚未验证其在其他树种或更广泛样本上的适用性 开发一种高效、精确的木材解剖结构分析方法,以解锁树木在其生命周期中存储的环境信息 木材端面解剖结构,特别是导管和射线的量化分析 数字病理学 NA 深度学习,千兆像素成像 YOLOv8 图像 30-35厘米直径的榉木圆盘和5根30厘米长的榉木增量芯
回到顶部