深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 26491 篇文献,本页显示第 8021 - 8040 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
8021 2025-04-01
Enhancing repeatability of follicle counting with deep learning reconstruction high-resolution MRI in PCOS patients
2025-01-07, Scientific reports IF:3.8Q1
研究论文 本研究探讨了使用深度学习重建高分辨率MRI提高多囊卵巢综合征(PCOS)患者卵泡计数重复性的方法 采用深度学习重建SSFSE图像(SSFSE-DL),在抑制运动伪影的同时补偿噪声,显著提高了卵泡检测的定性指标和FNPO评估的重复性 样本量较小(仅22名PCOS患者),且仅由一名观察者评估主观噪声 提高PCOS诊断中卵泡计数的准确性和可重复性 多囊卵巢综合征(PCOS)患者的卵巢影像 数字病理学 多囊卵巢综合征 PROPELLER MRI、SSFSE T2加权序列、深度学习重建 深度学习(DL) MRI图像 22名PCOS患者
8022 2025-04-01
Segmentation of the iliac crest from CT-data for virtual surgical planning of facial reconstruction surgery using deep learning
2025-01-07, Scientific reports IF:3.8Q1
研究论文 本研究开发了一种基于深度学习的自动化方法,用于从CT数据中分割髂嵴,以辅助面部重建手术的虚拟规划 首次采用3D U-Net架构的卷积神经网络实现髂嵴的自动化分割,并应用迁移学习优化模型训练 研究仅针对髂嵴分割,未涉及其他骨骼结构的自动化处理 开发自动化分割髂嵴的方法,以支持数字化手术规划流程 髂嵴的CT影像数据 数字病理 面部重建手术 CT成像 3D U-Net CT影像 1,398个手动分割的数据集(其中400个用于训练和验证,177个用于测试)
8023 2025-04-01
Prediction of white matter hyperintensities evolution one-year post-stroke from a single-point brain MRI and stroke lesions information
2025-01-07, Scientific reports IF:3.8Q1
研究论文 本研究利用单点脑MRI和卒中病灶信息预测卒中后一年白质高信号(WMH)的演变 结合卒中病灶信息并使用概率深度学习模型预测WMH演变,提出了一种新的体积损失函数以提高预测准确性 研究主要针对轻度卒中事件后的WMH演变,可能不适用于其他类型的卒中或脑部疾病 预测卒中后一年白质高信号的演变,以支持个性化治疗干预 轻度卒中患者的白质高信号(WMH)和卒中病灶 数字病理学 心血管疾病 T2-FLAIR脑MRI Probabilistic U-Net 图像 NA
8024 2025-04-01
Multi-scale feature fusion of deep convolutional neural networks on cancerous tumor detection and classification using biomedical images
2025-01-07, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于多尺度特征融合的深度卷积神经网络(MFFDCNN-CTDC)模型,用于生物医学图像中的癌症肿瘤检测和分类 结合ResNet50和EfficientNet架构进行多尺度特征融合,并采用混合烟花鲸鱼优化算法(FWWOA)进行参数调优 未提及模型在临床环境中的实际应用效果及泛化能力 开发一种高效的癌症肿瘤检测和分类方法 皮肤癌肿瘤 数字病理学 皮肤癌 深度学习 CNN(ResNet50, EfficientNet, Unet3+, CAE) 图像 ISIC 2017和HAM10000数据集
8025 2025-04-01
Deep learning-based encryption scheme for medical images using DCGAN and virtual planet domain
2025-01-07, Scientific reports IF:3.8Q1
research paper 提出了一种基于DCGAN和VPD的医学图像加密新技术 整合DCGAN和VPD方法生成诱饵图像,并利用时间戳、随机数和1-DEC映射生成加密密钥 未明确提及具体样本量或实验数据集的详细构成 增强医学图像的安全性,防止未经授权的访问和篡改 医学图像 数字病理 NA DCGAN, VPD, 1-DEC映射 DCGAN image NA
8026 2025-04-01
Ensemble genetic and CNN model-based image classification by enhancing hyperparameter tuning
2025-01-06, Scientific reports IF:3.8Q1
研究论文 提出了一种结合遗传算法和卷积神经网络的集成模型(EGACNN),通过优化超参数来提升图像分类的效率和准确率 结合遗传算法(GA)和卷积神经网络(CNN)进行超参数优化,提出EGACNN模型,显著提高了图像分类的准确率 研究仅基于MNIST数据集,未在其他更复杂的数据集上进行验证 提升基于CNN的图像分类系统的性能,利用集成学习和遗传算法的优势 图像分类模型 计算机视觉 NA 遗传算法(GA) CNN, GA, 集成学习(EGACNN, CSNN) 图像 MNIST数据集
8027 2025-04-01
Prediction of ECG signals from ballistocardiography using deep learning for the unconstrained measurement of heartbeat intervals
2025-01-06, Scientific reports IF:3.8Q1
研究论文 利用深度学习从心冲击图(BCG)信号中提取心电图(ECG)波形,并探索其在R-R间期(RRI)估计中的应用 提出了一种基于双向长短期记忆网络(BiLSTM)的深度学习模型,能够从BCG信号中预测ECG信号,实现无约束的心跳间隔测量 模型在长期记录数据上的泛化能力仍有提升空间,且样本量相对较小(18名参与者用于训练,12名用于验证) 开发一种无约束的心率监测方法,适用于家庭环境中的长期心脏健康监测 心冲击图(BCG)信号和心电图(ECG)信号 机器学习 心血管疾病 深度学习信号处理 BiLSTM 生理信号(BCG和ECG) 18名参与者用于训练模型,12名不同参与者用于长期记录验证
8028 2025-04-01
Explainable attention based breast tumor segmentation using a combination of UNet, ResNet, DenseNet, and EfficientNet models
2025-01-06, Scientific reports IF:3.8Q1
研究论文 本研究提出了一种基于改进UNet架构的深度学习技术,用于乳腺肿瘤分割,结合了注意力机制和先进的编码器架构 结合了CBAM和非局部注意力机制,以及ResNet、DenseNet和EfficientNet等先进的编码器架构,显著提升了分割性能 未来研究需探索多模态成像、实时临床应用以及更先进的注意力机制以进一步提升分割性能 提高乳腺肿瘤分割的准确性和可靠性 乳腺超声图像(BUSI)数据集中的乳腺肿瘤 计算机视觉 乳腺癌 深度学习 UNet、ResNet、DenseNet、EfficientNet 图像 BUSI数据集中的乳腺超声图像
8029 2025-04-01
Diagnostic Performance of a Computer-aided System for Tuberculosis Screening in Two Philippine Cities
2025, Acta medica Philippina
research paper 评估qXR3.0技术在菲律宾两个城市中用于结核病筛查的诊断性能 首次在菲律宾本地评估基于AI的结核病筛查系统qXR3.0的性能,并与放射科医生的诊断进行比较 样本量较小(82名参与者),未来研究需要更大样本量验证结果 评估qXR3.0技术在结核病筛查中的诊断性能,并验证其是否符合WHO标准 菲律宾15岁及以上成年人 digital pathology tuberculosis deep learning neural networks (DLNNs) qXR3.0 chest radiographs (CXRs) 82名参与者
8030 2025-04-01
Detection of ionospheric disturbances with a sparse GNSS network in simulated near-real time Mw 7.8 and Mw 7.5 Kahramanmaraş earthquake sequence
2025, GPS solutions IF:4.5Q1
研究论文 本文开发了一种近实时检测电离层扰动的方法,用于识别由地震引起的电离层异常信号 利用LSTM神经网络自动检测地震引起的电离层扰动,无需事先知晓地震事件 方法在夜间电离水平较低时可能无法检测到较小幅度的扰动 开发近实时电离层扰动检测方法,用于地震监测 由Kahramanmaraş地震序列引起的电离层扰动 地球物理监测 NA GNSS总电子含量(TEC)测量 LSTM 卫星信号数据 2023年2月6日Kahramanmaraş地震序列数据
8031 2025-03-30
Correction: Detection and recognition of foreign objects in Pu-erh Sun-dried green tea using an improved YOLOv8 based on deep learning
2025, PloS one IF:2.9Q1
correction 对一篇关于使用改进的YOLOv8深度学习模型检测和识别普洱茶晒青毛茶中外来物的文章进行更正 NA NA NA NA NA NA NA NA NA NA
8032 2024-10-02
Deep learning sharpens vistas on biodiversity mapping
2024-Oct-08, Proceedings of the National Academy of Sciences of the United States of America IF:9.4Q1
NA NA NA NA NA NA NA NA NA NA NA NA
8033 2025-04-01
A Deep Learning-based Pipeline for Segmenting the Cerebral Cortex Laminar Structure in Histology Images
2024-Oct, Neuroinformatics IF:2.7Q3
研究论文 本文提出了一种基于深度学习的流程,用于在组织学图像中分割大脑皮层的层状结构 开发了一种新颖的计算框架,结合AI工具获取皮层标签,并使用深度学习模型进行皮层分层分割,相比现有方法在分割质量上有显著提升 仅针对普通狨猴的Nissl染色和髓鞘染色切片图像进行研究,未在其他物种或染色方法上验证 理解大脑皮层层状结构的解剖学特征及其连接模式,为神经系统疾病研究提供见解 普通狨猴大脑的Nissl染色和髓鞘染色切片图像 数字病理学 神经系统疾病 深度学习 深度学习模型(未明确具体类型) 图像 普通狨猴大脑切片图像(具体数量未说明)
8034 2025-04-01
Modeling protein-small molecule conformational ensembles with ChemNet
2024-Sep-25, bioRxiv : the preprint server for biology
research paper 该研究开发了一种名为ChemNet的图神经网络,用于模拟蛋白质-小分子系统的构象异质性 ChemNet能够快速生成小分子和蛋白质-小分子系统的构象集合,并在酶设计方面表现出更高的成功率和活性 NA 模拟蛋白质-小分子系统的构象异质性,并提高酶设计的成功率 蛋白质-小分子系统 machine learning NA graph neural network ChemNet atomic level structures 数据来自Cambridge Structural Database和Protein Data Bank
8035 2024-08-07
Comment on 'Deep learning-assisted detection and segmentation of intracranial hemorrhage in noncontrast computed tomography scans of acute stroke patients: a systematic review and meta-analysis'
2024-Sep-01, International journal of surgery (London, England)
NA NA NA NA NA NA NA NA NA NA NA NA
8036 2025-04-01
Automated segmentation of the median nerve in patients with carpal tunnel syndrome
2024-07-20, Scientific reports IF:3.8Q1
研究论文 本研究利用U-Net网络训练算法,自动分割腕管综合征患者的正中神经超声图像并测量其横截面积 采用深度学习技术自动分割正中神经并测量其横截面积,为腕管综合征的诊断提供新方法 样本量较小(25例患者和26例健康对照),且自动化测量与手动测量存在10.9%的差异 开发一种自动化技术用于腕管综合征的诊断验证 腕管综合征患者和健康对照的正中神经超声图像 医学影像 腕管综合征 超声成像 U-Net 图像 25例腕管综合征患者和26例健康对照的2355张手动分割图像
8037 2025-04-01
Spatial Deconvolution of Cell Types and Cell States at Scale Utilizing TACIT
2024-Jun-27, Research square
研究论文 本文提出了一种名为TACIT的无监督算法,用于细胞注释,无需训练数据即可识别细胞类型和状态 开发了TACIT算法,无需训练数据即可进行细胞注释,并在多组学分析中识别模糊细胞,提高了准确性和可扩展性 虽然TACIT在多个数据集中表现良好,但其在更广泛细胞类型和疾病中的应用仍需进一步验证 解决空间生物学中细胞类型和状态识别的挑战,提高注释的准确性和效率 细胞类型和状态,特别是在脑、肠道和腺体三个生态位中的细胞 空间生物学 炎症性腺体疾病 多组学分析,空间转录组学和蛋白质组学 无监督算法 多组学数据 5个数据集,包含5,000,000个细胞和51种细胞类型
8038 2025-04-01
Spatial Deconvolution of Cell Types and Cell States at Scale Utilizing TACIT
2024-Jun-03, bioRxiv : the preprint server for biology
研究论文 本文提出了一种名为TACIT的无监督算法,用于细胞注释,通过预定义的签名在无需训练数据的情况下操作,利用无偏阈值区分阳性细胞与背景,专注于相关标记以识别多组学分析中的模糊细胞 开发了TACIT算法,一种无需训练数据的无监督细胞注释方法,通过无偏阈值和聚焦相关标记来提高准确性和可扩展性 未明确提及算法的局限性,但可能包括对预定义签名的依赖以及在更广泛细胞类型和状态中的泛化能力 解决空间生物学中细胞类型和状态识别的时间消耗和易出错问题 细胞类型和状态,特别是在脑、肠和腺体三个生态位中的细胞 空间生物学 炎症性腺体疾病 多组学分析,空间转录组学和蛋白质组学 无监督算法 多组学数据 五个数据集(5,000,000个细胞;51种细胞类型)
8039 2025-04-01
VesselBoost: A Python Toolbox for Small Blood Vessel Segmentation in Human Magnetic Resonance Angiography Data
2024-May-22, bioRxiv : the preprint server for biology
research paper 介绍了一个名为VesselBoost的Python工具箱,用于在人类磁共振血管造影数据中进行小血管分割 结合深度学习和不完美训练标签进行血管分割,并利用创新的数据增强技术 需要大量正确和全面标记的数据集,这在实践中可能难以获得 通过高分辨率MRA数据进行小血管的定量表征和精确表示,以支持血流模拟 人类大脑的小血管 digital pathology cardiovascular disease MRA, deep learning deep learning-based methods image NA
8040 2025-04-01
Areas of interest and sentiment analysis towards second generation antipsychotics, lithium and mood stabilizing anticonvulsants: Unsupervised analysis using Twitter
2024-04-15, Journal of affective disorders IF:4.9Q1
研究论文 通过分析Twitter上关于第二代抗精神病药物、锂盐和情绪稳定抗癫痫药物的提及和情感,探讨患者和公众对这些药物的态度和信念 利用社交媒体数据(Twitter)和AI技术(机器学习和深度学习)分析患者对精神疾病药物的态度和情感,揭示了不同语言和文化背景下的讨论差异 Twitter数据的简短性可能无法完全捕捉讨论的细微差别,且研究药物的广泛治疗用途使得难以隔离特定疾病的讨论,仅分析了英语和西班牙语的推文,限制了文化广度的发现 理解患者和公众对精神分裂症及相关精神病性障碍(SRD)或双相情感障碍(BD)治疗药物的态度和信念 Twitter上关于第二代抗精神病药物、锂盐和情绪稳定抗癫痫药物的提及和情感 自然语言处理 精神分裂症及相关精神病性障碍(SRD)或双相情感障碍(BD) 机器学习, 深度学习, 自然语言处理 NA 文本 893,289条推文(2008年至2022年)
回到顶部