深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24907 篇文献,本页显示第 801 - 820 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
801 2025-05-15
Deep learning for malignant lymph node segmentation and detection: a review
2025, Frontiers in immunology IF:5.7Q1
综述 本文深入回顾了深度学习在恶性淋巴结分割和检测方面的进展 专注于恶性淋巴结的深度学习应用,填补了该领域综述的空白 未提及具体模型的性能比较或量化分析 提升癌症治疗规划的精确性和效率 恶性淋巴结 数字病理学 癌症 深度学习 NA 医学影像 NA
802 2025-05-15
Leveraging artificial intelligence in disaster management: A comprehensive bibliometric review
2025, Jamba (Potchefstroom, South Africa)
综述 本文通过文献计量学方法回顾了人工智能在灾害管理中的应用 利用VOSviewer和Biblioshiny工具分析了848篇文献,揭示了AI在灾害管理中的研究趋势和科学图谱 仅基于Scopus数据库的英文文献,可能遗漏其他语言或数据库的重要研究 评估人工智能技术在灾害管理领域的应用现状和发展趋势 自然灾害管理相关的人工智能研究文献 机器学习 NA 文献计量分析 NA 文献数据 848篇出版物
803 2025-05-15
Making, not breaking the young, aspiring athlete: the development of Prep to be PRO (Nærmere Best) - a Norwegian school-based educational programme
2025, BMJ open sport & exercise medicine IF:3.9Q1
research paper 本文记录了Prep to be PRO教育模块化计划的开发过程,旨在支持和保护体育初中和体育高中年轻运动员的健康与发展 该计划首次系统性地整合了多学科知识,并通过国家高中课程确保其相关性和教育标准的一致性 尚未进行系统性的数据收集和效果评估,长期可持续性仍需验证 开发一个教育计划,以预防年轻运动员的健康问题并支持其发展 体育初中和体育高中的年轻运动员 运动科学 NA NA NA NA 超过40名利益相关者参与开发过程
804 2025-05-15
Deep learning object detection-based early detection of lung cancer
2025, Frontiers in medicine IF:3.1Q1
research paper 本文探讨了基于深度学习的物体检测技术在肺癌早期诊断中的应用 比较了不同版本的YOLO模型在肺癌CT图像检测任务中的性能,发现YOLOv8表现最佳 研究仅基于公开数据集Lung-PET-CT-Dx,未涉及其他数据集验证 提高肺癌早期诊断和分类的准确性 肺癌CT图像 computer vision lung cancer deep learning YOLO系列(YOLOv5, YOLOv8, YOLOv9, YOLOv10, YOLOv11) image Lung-PET-CT-Dx公共数据集
805 2025-05-15
RAMAS-Net: a module-optimized convolutional network model for aortic valve stenosis recognition in echocardiography
2025, Frontiers in medicine IF:3.1Q1
研究论文 提出了一种名为RAMAS-Net的深度学习模型,用于在超声心动图中自动识别和诊断主动脉瓣狭窄 通过将ResNet50主干的Stage 4替换为SCConv和MDTA模块,减少了冗余计算并提高了特征提取能力 NA 提高主动脉瓣狭窄的诊断准确性,支持临床决策 主动脉瓣狭窄(AS)患者 数字病理 心血管疾病 深度学习 CNN(ResNet50改进版) 图像(超声心动图) TMED-2和TMED-1数据集
806 2025-05-15
An optimized deep learning model based on transperineal ultrasound images for precision diagnosis of female stress urinary incontinence
2025, Frontiers in medicine IF:3.1Q1
研究论文 本研究开发并验证了一种基于经会阴超声图像的优化深度学习模型,以提高女性压力性尿失禁的诊断精度和可靠性 首次将深度学习模型(如DenseNet-121)应用于经会阴超声图像,显著提高了女性压力性尿失禁的诊断性能 研究为回顾性设计,样本量相对有限(464例),且仅评估了三种深度学习模型 提高女性压力性尿失禁的诊断精度和可靠性 464名女性的经会阴超声图像(200例患者和264例对照) 数字病理 尿失禁 经会阴超声(TPUS) ResNet-50, ResNet-152, DenseNet-121 图像 464名女性(200例患者和264例对照)
807 2025-05-15
Automatic segmentation and volume measurement of anterior visual pathway in brain 3D-T1WI using deep learning
2025, Frontiers in medicine IF:3.1Q1
研究论文 本研究探讨了使用3D UX-Net深度学习模型在脑部T1加权成像中自动分割和测量前视通路(AVP)体积的可行性 首次在脑部T1WI中使用3D UX-Net模型进行AVP自动分割和体积测量,并提供了成人AVP的标准化测量值 研究样本量相对较小(119名成人),且为回顾性研究 开发自动分割和测量前视通路体积的深度学习模型 前视通路(AVP) 数字病理学 NA 3D T1加权成像(T1WI) 3D UX-Net, 3D U-Net, Swin UNEt TRansformers (UNETR), UNETR++, Swin Soft Mixture Transformer (Swin SMT) 3D医学影像 119名成人的临床数据和脑部3D T1WI影像
808 2025-05-15
Regional, rural and remote medicine attracts students with a similar approach to learning in both the Northern and Southern hemisphere
2024-12, International journal of circumpolar health IF:1.3Q4
研究论文 本研究比较了南北半球两个医学项目中学生的学习目标取向和学习特征,以探讨适合农村医疗环境的学生特质 首次在跨半球背景下比较农村医学项目学生的学习特征和目标取向 样本仅来自两个医学项目,可能无法代表所有农村医学学生 探讨适合农村医疗环境的学生学习特征和目标取向 263名医学学生(分别来自南北半球的两个医学项目) 医学教育 NA 问卷调查(三种调查工具) NA 问卷调查数据 263名医学学生
809 2025-05-15
Monitoring Substance Use with Fitbit Biosignals: A Case Study on Training Deep Learning Models Using Ecological Momentary Assessments and Passive Sensing
2024-Dec, AI (Basel, Switzerland)
研究论文 本研究探讨了使用Fitbit生物信号监测物质使用的可行性,并通过个性化机器学习和自监督学习技术提高了检测准确性 采用参与者特定的卷积神经网络(CNNs)结合自监督学习(SSL)来检测药物使用,以应对个体间数据异质性问题 样本量较小(仅9名参与者),限制了研究结果的普适性 开发一种基于可穿戴设备生物信号的物质使用实时监测系统 物质使用障碍患者 机器学习 物质使用障碍 自监督学习(SSL) 1D-CNN 生物信号数据 9名参与者
810 2025-05-15
Using Deep Learning to Suggest Treatment for Proximal Humerus Fractures
2024-11-22, Studies in health technology and informatics
research paper 该研究开发了一个基于深度学习的模型,用于根据肱骨近端骨折的放射影像预测治疗类型 利用深度学习模型预测肱骨近端骨折的治疗类型,其准确性和观察者间可靠性超过了肩部外科医生的判断 模型仅在特定测试数据集上进行了验证,可能需要更多样化的数据以提高泛化能力 开发一个治疗决策支持系统,以加快急诊科对肱骨近端骨折的治疗决策 肱骨近端骨折患者 digital pathology 骨折 深度学习 NA image NA
811 2025-05-15
ECG classification via integration of adaptive beat segmentation and relative heart rate with deep learning networks
2024-Oct, Computers in biology and medicine IF:7.0Q1
research paper 提出了一种先进的深度学习方法,用于准确分析心电图(ECG)信号,同时处理波形描绘和心跳类型分类任务 将自适应心跳分割方法和相对心率信息整合到深度学习模型中,显著提高了模型性能 NA 提高心电图信号分析的准确性,特别是在波形描绘和心跳类型分类方面 心电图信号 machine learning cardiovascular disease deep learning deep learning networks ECG signal PhysioNet QT Database, MIT-BIH Arrhythmia Database, and real-world wearable device data
812 2025-05-15
TA-RNN: an attention-based time-aware recurrent neural network architecture for electronic health records
2024-06-28, Bioinformatics (Oxford, England)
研究论文 提出了一种基于注意力机制的时间感知循环神经网络架构TA-RNN,用于电子健康记录分析 提出了两种可解释的深度学习架构TA-RNN和TA-RNN-AE,通过时间嵌入处理临床访问间隔不规则问题,并采用双级注意力机制提高模型可解释性 模型性能仅在特定疾病(阿尔茨海默病)和特定数据集上验证 开发可解释的深度学习模型来预测患者临床结果 电子健康记录(EHR)数据 机器学习 阿尔茨海默病 深度学习 RNN, TA-RNN, TA-RNN-AE 电子健康记录 ADNI和NACC数据集(阿尔茨海默病),MIMIC-III数据集(死亡率预测)
813 2025-05-15
Histopathology Based AI Model Predicts Anti-Angiogenic Therapy Response in Renal Cancer Clinical Trial
2024-May-28, ArXiv
PMID:38855551
研究论文 本研究开发了一种基于深度学习的模型,通过组织病理学切片预测肾癌抗血管生成治疗的应答 提出了一种新型深度学习模型,能够从普遍存在的组织病理学切片中预测Angioscore,并生成可视化的血管网络以增强模型的可解释性 ccRCC肿瘤具有高度异质性,且对多个区域进行测序采样不切实际 预测转移性透明细胞肾细胞癌(ccRCC)对抗血管生成治疗的应答 转移性透明细胞肾细胞癌(ccRCC)患者 数字病理学 肾癌 深度学习 DL 组织病理学图像 多个队列包括临床试验数据集
814 2025-05-15
DEEP IMAGE PRIOR WITH STRUCTURED SPARSITY (DISCUS) FOR DYNAMIC MRI RECONSTRUCTION
2024-May, Proceedings. IEEE International Symposium on Biomedical Imaging
research paper 提出了一种名为DISCUS的自监督深度学习方法,用于动态MRI图像重建 DISCUS方法在深度图像先验基础上引入结构化稀疏性,无需指定流形维度即可发现描述帧间时间变化的低维流形 仅在三项数值研究中进行了验证,临床实际应用效果有待进一步验证 解决动态MRI中高质量训练数据不足的问题,提高图像重建质量 动态MRI图像序列 医学影像分析 心血管疾病 深度学习 DISCUS(基于DIP改进的模型) MRI图像序列 5例患者的回顾性欠采样单次LGE数据
815 2025-05-15
Deep learning assisted single particle tracking for automated correlation between diffusion and function
2024-Feb-02, Research square
research paper 提出了一种名为DeepSPT的深度学习框架,用于快速高效地解释物体在2D或3D时间上的扩散行为 DeepSPT能够从扩散行为中自动提取功能信息,无需人工干预,准确率高达95% 未提及具体的技术限制或应用范围的局限性 研究目的是通过深度学习框架自动关联亚细胞扩散与功能信息 分子和细胞器在亚细胞环境中的扩散行为 machine learning NA deep learning NA 2D或3D时间序列数据 未提及具体样本数量
816 2025-05-15
Using DeepContact with Amira graphical user interface
2023-12-15, STAR protocols IF:1.3Q4
research paper 介绍如何将DeepContact深度学习软件集成到Amira的人工智能模块中,用于二维电子显微镜图像中膜接触位点的高通量量化 通过Amira的用户友好图形界面调用DeepContact功能,简化了膜接触位点的量化过程 未提及具体性能指标或与其他方法的比较 开发一种用户友好的方法,用于量化电子显微镜图像中的膜接触位点 二维电子显微镜图像中的膜接触位点 digital pathology NA 电子显微镜成像 DeepContact image NA
817 2025-05-15
Protocol to analyze fundus images for multidimensional quality grading and real-time guidance using deep learning techniques
2023-12-15, STAR protocols IF:1.3Q4
研究论文 介绍了一种名为DeepFundus的深度学习协议,用于眼底图像的多维质量分类和实时采集指导 利用深度学习技术实现眼底图像的多维质量分类,并提供实时采集指导 需要依赖特定数据集或自定义数据集,可能受限于数据质量和多样性 解决医学人工智能研究中的数据质量问题,提高眼底图像采集的质量和效率 眼底图像 计算机视觉 NA 深度学习 CNN 图像 未明确说明样本数量,但提到可以使用建议数据集或自定义数据集
818 2025-05-15
Deep learning assisted single particle tracking for automated correlation between diffusion and function
2023-Nov-17, bioRxiv : the preprint server for biology
research paper 介绍了一种名为DeepSPT的深度学习框架,用于快速高效地解释物体在2D或3D时间上的扩散行为 DeepSPT能够从扩散行为中自动提取功能信息,无需人工干预,准确率高达95% 未提及具体的样本量或实验条件的限制 研究目的是通过深度学习框架自动关联亚细胞扩散与功能信息 研究物体包括分子和细胞器在亚细胞环境中的扩散行为 machine learning NA deep learning DeepSPT 2D或3D时间序列数据 NA
819 2025-05-15
Protocol for predicting peptides with anticancer and antimicrobial properties by a tri-fusion neural network
2023-09-15, STAR protocols IF:1.3Q4
研究论文 本文介绍了一种使用TriNet三融合神经网络预测具有抗癌和抗菌特性的肽的协议 提出了一种名为TriNet的三融合神经网络,用于预测具有抗癌和抗菌特性的肽 未提及具体性能指标或与其他方法的比较 开发一种预测具有抗癌和抗菌特性肽的深度学习工具 肽序列 机器学习 癌症 深度学习 TriNet(三融合神经网络) 序列数据 NA
820 2025-05-14
Deep learning for the prediction of acute kidney injury after coronary angiography and intervention in patients with chronic kidney disease: a model development and validation study
2025-Dec, Renal failure IF:3.0Q1
研究论文 本研究开发并验证了一种基于深度学习的模型,用于预测慢性肾脏病患者在接受冠状动脉造影和介入治疗后发生对比剂后急性肾损伤的风险 首次为慢性肾脏病患者开发了可解释的深度神经网络模型来预测对比剂后急性肾损伤,并提供了基于网络的临床决策工具 研究为单中心回顾性研究,样本量相对有限(989例患者) 开发预测慢性肾脏病患者冠状动脉造影/介入术后对比剂肾损伤风险的AI工具 接受冠状动脉造影或介入治疗的慢性肾脏病患者 数字病理 心血管疾病 机器学习算法比较(包括随机森林和深度神经网络) DNN(深度神经网络) 临床数据(术前和术中变量) 989例慢性肾脏病患者(125例发生PC-AKI)
回到顶部