深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 26337 篇文献,本页显示第 8181 - 8200 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
8181 2025-03-25
Deep learning structural insights into heterotrimeric alternatively spliced P2X7 receptors
2024-Aug, Purinergic signalling IF:3.0Q2
研究论文 本研究利用深度学习工具AlphaFold2-Multimer (AF2M)预测并验证了异源三聚体P2X7受体的结构 首次应用AF2M预测异源三聚体P2X7受体的结构,并通过多种方法验证了模型的准确性 研究主要依赖于计算模型,需要进一步的实验验证 探索异源三聚体P2X7受体的结构及其功能影响 P2X7受体及其剪接变体 结构生物学 NA AlphaFold2-Multimer (AF2M), 冷冻电镜(cryo-EM) AlphaFold2-Multimer 蛋白质结构数据 多个P2X7受体剪接变体
8182 2025-03-25
An explainable long short-term memory network for surgical site infection identification
2024-07, Surgery IF:3.2Q1
研究论文 提出一种可解释的LSTM网络用于从医疗记录中识别手术部位感染 使用带有注意力层的LSTM网络提高模型性能的同时增加可解释性 数据仅来自单一医疗系统,可能影响模型泛化能力 开发自动识别手术部位感染的深度学习模型 手术患者的医疗记录数据 自然语言处理 手术部位感染 深度学习 LSTM 结构化数据和临床文本 9,185例手术事件
8183 2025-03-25
A deep learning quantification of patient specificity as a predictor of session attendance and treatment response to internet-enabled cognitive behavioural therapy for common mental health disorders
2024-04-01, Journal of affective disorders IF:4.9Q1
研究论文 本研究利用深度学习模型评估患者对话的具体性对互联网认知行为疗法(CBT)治疗常见心理健康障碍的效果和疗程完成率的影响 首次使用深度学习量化患者对话具体性,并分析其与CBT治疗效果和疗程完成率的关系 无法从数据中推断因果关系 评估患者对话具体性对CBT治疗效果和疗程完成率的预测作用 接受互联网CBT治疗的常见心理健康障碍患者 自然语言处理 常见心理健康障碍 深度学习 深度学习模型 文本(治疗对话记录) 65,030名参与者(353,614次治疗会话)
8184 2025-03-25
Pediatric ECG-Based Deep Learning to Predict Left Ventricular Dysfunction and Remodeling
2024-03-19, Circulation IF:35.5Q1
research paper 本研究利用深度学习技术分析儿童心电图,预测左心室功能障碍和重构 首次将人工智能增强的心电图分析应用于儿科人群,预测左心室功能障碍和重构 研究未包括患有重大先天性心脏病的儿童,可能限制了模型的普适性 开发一种经济有效的筛查工具,用于儿童左心室功能障碍和重构的早期检测 年龄≤18岁且无重大先天性心脏病的儿童 digital pathology cardiovascular disease ECG-echocardiogram配对分析 CNN ECG和超声心动图数据 训练队列包括92,377对ECG-超声心动图数据(46,261名患者),测试组包括内部测试(12,631名患者)、急诊科(2,830名患者)和外部验证(5,088名患者)队列
8185 2025-03-25
ANN multi-layer perceptron for prediction of blood-brain barrier permeable compounds for central nervous system therapeutics
2024-Mar-18, Journal of biomolecular structure & dynamics IF:2.7Q2
研究论文 本文开发了一种基于人工神经网络的多层感知器模型,用于预测能够穿透血脑屏障的化合物,以促进中枢神经系统药物的早期筛选 使用大型数据集开发了一个高精度的ANN模型,用于预测BBB渗透性,其准确率、特异性、敏感性和AUC均表现优异 仅基于化学结构预测BBB渗透性可能存在一定难度,未提及模型在其他独立数据集上的验证情况 开发机器学习模型以预测化合物的血脑屏障渗透性,促进中枢神经系统药物的发现 潜在的能够穿透血脑屏障的化合物 机器学习 中枢神经系统疾病 机器学习 ANN多层感知器 化学结构数据 大型数据集(具体数量未提及)
8186 2025-03-25
Deep-VEGF: deep stacked ensemble model for prediction of vascular endothelial growth factor by concatenating gated recurrent unit with two-dimensional convolutional neural network
2024-Mar-07, Journal of biomolecular structure & dynamics IF:2.7Q2
research paper 该研究提出了一种名为Deep-VEGF的深度学习集成模型,用于预测血管内皮生长因子(VEGF) 提出了一种新的特征描述符KSTS-BPSSM,并采用GRU、GAN和CNN的深度学习技术进行模型训练,通过堆叠学习方法集成GRU和CNN 实验识别VEGF昂贵且耗时,该方法可能依赖于特定数据集的质量和规模 开发一种计算模型以准确预测VEGF,加速相关研究和药物发现 血管内皮生长因子(VEGF)及其在多种疾病中的作用 machine learning cancer, diabetic retinopathy, macular degeneration, arthritis deep learning GRU, GAN, CNN primary sequences NA
8187 2025-03-25
CMNet: deep learning model for colon polyp segmentation based on dual-branch structure
2024-Mar, Journal of medical imaging (Bellingham, Wash.)
research paper 提出了一种基于双分支结构的深度学习模型CMNet,用于结肠息肉分割 采用双分支结构结合CNN与transformer,引入深度可分离卷积和条纹池化模块,提出聚合注意力模块(AAM)进行高维语义信息融合 NA 开发深度学习模型辅助结肠息肉的医学诊断和手术 结肠息肉 digital pathology colon cancer deep learning CNN, transformer medical images Kvasir-SEG数据集上的五折交叉验证
8188 2025-03-22
Author Correction: A study on hybrid-architecture deep learning model for predicting pressure distribution in 2D airfoils
2025-Mar-20, Scientific reports IF:3.8Q1
NA NA NA NA NA NA NA NA NA NA NA NA
8189 2025-03-24
This Microtubule Does Not Exist: Super-Resolution Microscopy Image Generation by a Diffusion Model
2025-Mar, Small methods IF:10.7Q1
研究论文 本文探讨了扩散模型在超分辨率显微镜图像生成中的应用,展示了生成图像与实验图像的相似性,并证明了生成模型在数据增强中的实用性 首次将扩散模型应用于超分辨率显微镜图像生成,并展示了其在数据增强中的潜力 生成模型的训练依赖于少量实验图像,可能限制了生成图像的多样性和泛化能力 探索扩散模型在超分辨率显微镜图像生成中的应用,并评估其在数据增强中的效果 超分辨率显微镜图像 计算机视觉 NA 扩散模型 扩散模型 图像 少量实验图像
8190 2025-03-24
Artificial Intelligence-Assisted Detection of Breast Cancer Lymph Node Metastases in the Post-Neoadjuvant Treatment Setting
2025-Feb-26, Laboratory investigation; a journal of technical methods and pathology
研究论文 本研究开发了一种可解释的深度学习管道,用于在乳腺癌患者接受新辅助系统治疗(NAT)后,自动检测淋巴结转移 首次评估了深度学习算法在接受NAT治疗的乳腺癌患者淋巴结转移检测中的泛化能力,并创建了一个包含1027张切片的大型数据集 研究仅限于乳腺癌患者,且数据集仅包含接受NAT治疗的患者,可能限制了算法的广泛适用性 开发并评估一种深度学习管道,用于自动检测乳腺癌患者接受NAT治疗后的淋巴结转移 乳腺癌患者的淋巴结切片 数字病理学 乳腺癌 深度学习 深度学习管道 图像 1027张切片
8191 2025-03-23
Automated Cone Photoreceptor Detection in Adaptive Optics Flood Illumination Ophthalmoscopy
2025 May-Jun, Ophthalmology science IF:3.2Q1
研究论文 本文开发并验证了一种基于深度学习的模型,用于在自适应光学泛光照明眼底成像(AO-FIO)中检测视锥细胞 该研究首次使用基于U-Net架构的深度学习模型进行视锥细胞的自动检测,并在多个医疗中心进行了验证,表现优于制造商的自动检测软件 研究仅涉及健康志愿者,未涵盖患有眼部疾病的患者,且样本量相对较小 开发一种自动检测视锥细胞的深度学习模型,以提高检测效率和准确性 健康志愿者的视锥细胞 计算机视觉 NA 自适应光学泛光照明眼底成像(AO-FIO) U-Net 图像 36名健康志愿者,每只眼睛采集21张AO-FIO图像
8192 2025-03-23
AlphaMissense Predictions and ClinVar Annotations: A Deep Learning Approach to Uveal Melanoma
2025 May-Jun, Ophthalmology science IF:3.2Q1
研究论文 本文探讨了使用深度学习工具AlphaMissense评估葡萄膜黑色素瘤(UM)中基因突变的功能影响 使用AlphaMissense工具对UM中的错义突变进行功能影响评估,并与ClinVar数据库中的临床意义进行交叉验证 仅分析了COSMIC数据库中的错义突变,且只有40.4%的突变在ClinVar中有对应数据 评估UM中基因突变的致病性,以改进基因组诊断和个性化治疗策略 葡萄膜黑色素瘤(UM)患者的基因数据 生物信息学 葡萄膜黑色素瘤 深度学习 AlphaMissense, AlphaFold 基因突变数据 1310个UM中的错义突变,其中151个独特错义突变被分析
8193 2025-03-23
Robust and interpretable deep learning system for prognostic stratification of extranodal natural killer/T-cell lymphoma
2025-Apr, European journal of nuclear medicine and molecular imaging IF:8.6Q1
研究论文 本文开发并验证了DeepENKTCL,一个用于预测外鼻型自然杀伤/T细胞淋巴瘤(ENKTCL)预后风险分层的可解释深度学习系统 DeepENKTCL结合了肿瘤分割模型、PET/CT融合模型和预后预测模型,通过SHAP分析增强了模型的可解释性,提供了优于现有模型的预后性能和临床效益 研究样本来自四个中心,可能存在样本选择偏差,且未提及外部验证结果 开发并验证一个可解释的深度学习系统,用于ENKTCL的预后风险分层 外鼻型自然杀伤/T细胞淋巴瘤(ENKTCL)患者 数字病理学 淋巴瘤 深度学习、PET/CT融合、放射组学、拓扑特征分析 深度学习模型 医学影像(PET/CT) 562名患者,分为训练、验证和测试队列
8194 2025-03-23
Progress, Pitfalls, and Impact of AI-Driven Clinical Trials
2025-Apr, Clinical pharmacology and therapeutics
评论 本文探讨了自2010年代初深度学习革命以来,人工智能在药物发现和开发中的应用进展、挑战及潜在影响 本文强调了人工智能在药物发现和开发中的潜力,并指出了当前面临的挑战 尽管投入了大量资金和努力,但很少有AI发现或设计的药物进入人体临床试验,且尚未有药物获得临床批准 探讨人工智能在药物发现和开发中的应用进展及挑战 人工智能驱动的药物发现和开发 机器学习 NA NA NA NA NA
8195 2025-03-23
Deep convolutional neural networks for early detection of interproximal caries using bitewing radiographs: A systematic review
2025-Mar-21, Evidence-based dentistry
系统综述 本文系统综述了使用深度卷积神经网络(DCNN)通过咬翼片X光片检测邻面龋齿的研究 本文首次系统性地评估了不同深度卷积神经网络在咬翼片X光片上检测邻面龋齿的效果,并特别强调了YOLOv8模型在此任务中的优越性 纳入的研究中仅有40%在参考标准领域具有低偏倚风险,表明研究质量参差不齐 评估深度卷积神经网络在咬翼片X光片上检测邻面龋齿的准确性和有效性 咬翼片X光片 计算机视觉 龋齿 深度卷积神经网络(DCNN) CNN, YOLOv8 图像 112至3,989名参与者
8196 2025-03-23
Challenges in Implementing Endoscopic Artificial Intelligence: The Impact of Real-World Imaging Conditions on Barrett's Neoplasia Detection
2025-Mar-21, United European gastroenterology journal IF:5.8Q1
研究论文 本研究旨在量化在社区医院中,基于专家图像训练的巴雷特氏瘤计算机辅助检测系统在暴露于日常临床实践中更异质成像条件下的性能下降,并评估减轻这种性能损失的策略 研究首次量化了在社区医院中,基于专家图像训练的计算机辅助检测系统在异质成像条件下的性能下降,并提出了三种提高算法对数据异质性鲁棒性的方法 研究仅针对巴雷特氏瘤的检测,未涉及其他疾病或更广泛的临床应用 评估和提高计算机辅助检测系统在异质成像条件下的性能 巴雷特氏瘤患者的内镜图像 计算机视觉 巴雷特氏瘤 深度学习 计算机辅助检测系统 图像 373名巴雷特氏瘤患者的1011张高质量图像,以及117名患者的独立测试集
8197 2025-03-23
Ovarian masses suggested for MRI examination: assessment of deep learning models based on non-contrast-enhanced MRI sequences for predicting malignancy
2025-Mar-21, Abdominal radiology (New York)
研究论文 本研究评估并比较了四种基于非增强MRI的深度学习模型在区分良性和恶性卵巢肿瘤中的诊断效能和开发成本 首次在非增强MRI序列上评估和比较了四种深度学习模型(ConvNeXt, FBNet, GhostNet, ResNet50)在卵巢肿瘤良恶性鉴别中的应用 研究为回顾性设计,可能受到选择偏倚的影响,且未考虑不同MRI扫描仪和参数的影响 评估和比较深度学习模型在非增强MRI上区分良性和恶性卵巢肿瘤的诊断效能 526名因疑似卵巢肿块而推荐进行MRI检查的患者 数字病理 卵巢癌 非增强MRI ConvNeXt, FBNet, GhostNet, ResNet50 图像 526名患者(327例良性病变,199例恶性病变)
8198 2025-03-23
Deep learning-assisted detection of intracranial hemorrhage: validation and impact on reader performance
2025-Mar-21, Neuroradiology IF:2.4Q2
研究论文 本研究验证了一种用于颅内出血检测的深度学习算法,并评估了其对读者诊断性能的影响 开发并验证了JLK-ICH深度学习算法,显著提高了非专家读者对颅内出血的诊断准确性 研究主要基于回顾性数据,且外部验证数据集仅来自美国多民族群体,可能存在一定的局限性 验证深度学习算法在颅内出血检测中的准确性及其对临床诊断的辅助作用 颅内出血患者的CT扫描图像 计算机视觉 颅内出血 深度学习 JLK-ICH CT图像 1,370例CT扫描,其中800例用于读者性能研究
8199 2025-03-23
Annotation-efficient, patch-based, explainable deep learning using curriculum method for breast cancer detection in screening mammography
2025-Mar-19, Insights into imaging IF:4.1Q1
研究论文 开发了一种基于课程学习和分块方法的深度学习模型,用于乳腺X光检查中的乳腺癌检测,利用弱注释和强注释,并通过Grad-CAM提供可解释的人工智能 结合课程学习和分块方法,利用有限数量的强注释数据进行训练,提高了模型性能和可解释性 需要进一步验证模型在更大规模数据集上的泛化能力 开发一种高效的深度学习模型,用于乳腺X光检查中的乳腺癌检测 乳腺X光检查图像 计算机视觉 乳腺癌 深度学习 基于分块的深度学习模型 图像 1976张乳腺X光检查图像(来自三个中心),外部测试数据集包含4276张乳腺X光检查图像
8200 2025-03-23
Design of thin, wideband electromagnetic absorbers with polarization and angle insensitivity using deep learning
2025-Mar-19, Scientific reports IF:3.8Q1
研究论文 本文介绍了一种利用深度学习设计薄型、宽带电磁波吸收器的新方法,该吸收器具有极化和角度不敏感性 利用生成对抗网络(GAN)和多层感知器(MLP)网络设计薄型、宽带电磁波吸收器,覆盖8-12 GHz频率范围,具有高吸收率和极化和角度不敏感性 NA 设计一种薄型、宽带电磁波吸收器,适用于大规模生产 电磁波吸收器 机器学习 NA 生成对抗网络(GAN),多层感知器(MLP) GAN, MLP 数值全波电磁模拟数据 NA
回到顶部