本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8221 | 2025-02-20 |
Moving Beyond CT Body Composition Analysis: Using Style Transfer for Bringing CT-Based Fully-Automated Body Composition Analysis to T2-Weighted MRI Sequences
2025-Feb-19, Investigative radiology
IF:7.0Q1
DOI:10.1097/RLI.0000000000001162
PMID:39961134
|
研究论文 | 本研究提出了一种基于深度学习的自动身体成分分析方法,使用MR T2加权序列进行身体成分分析 | 通过将CT分割映射到使用CycleGAN生成的合成MR图像上,实现了从CT到MRI的身体成分分析,并利用nnU-Net模型进行3D和2D分割 | 研究中使用的合成数据对数量较少(30对),可能影响模型的泛化能力 | 开发一种自动化方法,用于从T2加权MRI序列中提取身体成分分析参数 | 120名患者的T2加权MRI序列 | 计算机视觉 | NA | CycleGAN, nnU-Net | nnU-Net V2 (3D和2D) | 图像(MRI序列) | 120名患者(46%女性,中位年龄56岁) |
8222 | 2025-02-20 |
Prediction of adverse pathology in prostate cancer using a multimodal deep learning approach based on [18F]PSMA-1007 PET/CT and multiparametric MRI
2025-Feb-19, European journal of nuclear medicine and molecular imaging
IF:8.6Q1
DOI:10.1007/s00259-025-07134-0
PMID:39969539
|
研究论文 | 本研究开发并评估了一种基于[18F]PSMA-1007 PET/CT和多参数MRI(mpMRI)的多模态深度学习模型,用于预测前列腺癌患者的不良病理(AP) | 该研究首次将[18F]PSMA-1007 PET/CT与mpMRI结合,构建了一个多模态深度学习模型(MPC),并进一步整合临床特征构建了集成模型(MPCC),显著提高了预测AP的能力 | 研究为回顾性分析,可能存在选择偏差,且样本量相对较小,需要进一步的前瞻性研究验证 | 开发并评估一种多模态深度学习模型,用于预测前列腺癌患者的不良病理(AP) | 341名接受根治性前列腺切除术(RP)并进行了mpMRI和PET/CT扫描的前列腺癌患者 | 数字病理 | 前列腺癌 | 深度学习 | 卷积神经网络(CNN)和Transformer | 图像(PET/CT和mpMRI) | 341名前列腺癌患者 |
8223 | 2025-02-20 |
Robust and generalizable artificial intelligence for multi-organ segmentation in ultra-low-dose total-body PET imaging: a multi-center and cross-tracer study
2025-Feb-19, European journal of nuclear medicine and molecular imaging
IF:8.6Q1
DOI:10.1007/s00259-025-07156-8
PMID:39969540
|
研究论文 | 本研究开发并验证了一种深度学习模型,用于在不同成像条件和示踪剂下进行多器官PET分割,解决了完全基于PET的定量分析的关键需求 | 该模型在多种成像条件、中心和示踪剂下实现了有效的、完全基于PET的多器官分割,展示了高鲁棒性和泛化能力 | 本研究为回顾性研究,基于已收集的数据,可能受到数据质量和多样性的限制 | 开发并验证一种深度学习模型,用于在不同成像条件和示踪剂下进行多器官PET分割 | 798名来自多个中心的患者,使用不同示踪剂进行PET成像 | 医学影像分析 | NA | 深度学习 | 3D深度学习模型 | PET图像 | 798名患者 |
8224 | 2025-02-20 |
Comparison of different dental age estimation methods with deep learning: Willems, Cameriere-European, London Atlas
2025-Feb-19, International journal of legal medicine
IF:2.2Q1
DOI:10.1007/s00414-025-03452-y
PMID:39969569
|
研究论文 | 本研究比较了使用Willems、Cameriere-Europe、London Atlas和深度学习方法在土耳其儿童的全景X光片上进行牙龄估计的效果 | 首次将深度学习方法与传统牙龄估计方法(Willems、Cameriere-Europe、London Atlas)进行比较,并应用于土耳其儿童的全景X光片 | London Atlas方法仅适用于男孩的牙龄预测,其他方法(Willems、Cameriere-Europe和深度学习方法)需要进一步修订 | 比较不同牙龄估计方法的准确性,特别是深度学习方法与传统方法的差异 | 1169名土耳其儿童(613名女孩,556名男孩)的全景X光片 | 计算机视觉 | NA | 深度学习 | 卷积神经网络(CNN) | 图像(全景X光片) | 1169名儿童(613名女孩,556名男孩) |
8225 | 2025-02-20 |
Sex estimation with convolutional neural networks using the patella magnetic resonance image slices
2025-Feb-19, Forensic science, medicine, and pathology
DOI:10.1007/s12024-025-00943-7
PMID:39969760
|
研究论文 | 本研究通过开发的模型,使用EfficientNetB3、MobileNetV2、VGG16、ResNet50和DenseNet121架构,在髌骨磁共振图像上进行性别估计 | 首次在髌骨磁共振图像切片上应用多种深度学习架构进行性别估计,无需使用传统的形态测量方法 | 样本量相对较小,仅包含696名患者,且未对不同年龄段或种族群体进行细分分析 | 开发自动化的性别估计方法,减少对经验丰富人员的依赖并提高效率 | 696名患者(293名男性和403名女性)的6710张髌骨磁共振图像切片 | 计算机视觉 | NA | 磁共振成像(MRI) | CNN(包括EfficientNetB3、MobileNetV2、VGG16、ResNet50和DenseNet121) | 图像 | 696名患者的6710张髌骨磁共振图像切片 |
8226 | 2025-02-20 |
Artificial intelligence in the management of metabolic disorders: a comprehensive review
2025-Feb-19, Journal of endocrinological investigation
IF:3.9Q2
DOI:10.1007/s40618-025-02548-x
PMID:39969797
|
综述 | 本文综述了人工智能在代谢性疾病管理中的重要作用,包括糖尿病、肥胖、代谢功能障碍相关脂肪肝病和甲状腺功能障碍 | 本文综合探讨了AI在代谢性疾病管理中的多种应用,如早期诊断、个性化治疗、风险评估和生物标志物发现,并强调了AI与临床实践结合的革命性潜力 | 本文提到AI实施中的挑战和伦理考虑,如数据隐私、模型可解释性和偏见缓解,但未深入探讨具体解决方案 | 探讨人工智能在代谢性疾病管理中的应用及其潜力 | 代谢性疾病,包括糖尿病、肥胖、代谢功能障碍相关脂肪肝病和甲状腺功能障碍 | 自然语言处理, 计算机视觉, 机器学习 | 代谢性疾病 | 机器学习(ML), 深度学习(DL), 自然语言处理(NLP), 强化学习 | NA | NA | NA |
8227 | 2025-02-20 |
Deep learning for augmented process monitoring of scalable perovskite thin-film fabrication
2025-Feb-18, Energy & environmental science
IF:32.4Q1
DOI:10.1039/d4ee03445g
PMID:39830789
|
研究论文 | 本文展示了深度学习在增强大面积钙钛矿薄膜制造过程监控中的应用 | 利用深度学习增强成像方法,实现材料成分监控、薄膜质量早期评估及过程控制建议生成 | 研究基于中等规模数据集,可能在大规模应用中存在限制 | 提高钙钛矿光伏材料的大面积制造可重复性 | 钙钛矿薄膜的制造过程 | 机器学习 | NA | 深度学习 | NA | 图像数据 | 中等规模数据集 |
8228 | 2025-02-20 |
Integrating State-Space Modeling, Parameter Estimation, Deep Learning, and Docking Techniques in Drug Repurposing: A Case Study on COVID-19 Cytokine Storm
2025-Feb-18, Journal of the American Medical Informatics Association : JAMIA
IF:4.7Q1
DOI:10.1093/jamia/ocaf035
PMID:39965087
|
研究论文 | 本研究通过整合状态空间建模、参数估计、深度学习和分子对接技术,探索药物再利用在COVID-19细胞因子风暴中的应用 | 结合数学建模、PID控制器、深度学习和分子对接技术,提出了一种综合方法用于快速识别关键调控蛋白和药物再利用 | 研究主要针对COVID-19的细胞因子风暴,未广泛验证其他病毒或疾病的应用效果 | 开发快速有效的治疗方法,以应对SARS-CoV-2变种带来的挑战 | COVID-19细胞因子风暴中的关键调控蛋白(如ACE2) | 药物再利用 | COVID-19 | 状态空间建模、参数估计、深度学习、分子对接 | 深度学习模型 | 蛋白质相互作用数据、药物-靶点相互作用数据 | NA |
8229 | 2025-02-20 |
Dual-Domain Self-Supervised Deep Learning with Graph Convolution for Low-Dose Computed Tomography Reconstruction
2025-Feb-18, Journal of imaging informatics in medicine
DOI:10.1007/s10278-024-01314-4
PMID:39966223
|
研究论文 | 本文提出了一种名为DDoS的双域自监督深度学习框架,用于低剂量计算机断层扫描(LDCT)图像的去噪和重建 | DDoS框架结合了图卷积和多通道注意力模块,能够在sinogram域和图像域同时进行去噪,有效提升了LDCT图像的信噪比 | 尽管DDoS框架在实验中表现出色,但其在临床环境中的实际应用仍需进一步验证 | 提高低剂量计算机断层扫描(LDCT)图像的信噪比,以满足诊断所需的图像质量 | 低剂量计算机断层扫描(LDCT)图像 | 计算机视觉 | NA | 深度学习 | 图卷积网络(GCN) | 图像 | 两个大规模LDCT数据集 |
8230 | 2025-02-20 |
Enhancing Semantic Segmentation in High-Resolution TEM Images: A Comparative Study of Batch Normalization and Instance Normalization
2025-Feb-17, Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada
IF:2.9Q1
DOI:10.1093/mam/ozae093
PMID:39405188
|
研究论文 | 本文研究了批量归一化(BN)和实例归一化(IN)对高分辨率透射电子显微镜(TEM)图像语义分割深度学习模型性能的影响 | 通过比较BN和IN在U-Net和ResNet架构上的表现,发现IN在Dice分数和交并比指标上持续优于BN,强调了选择适当归一化方法的重要性 | 研究仅基于两种数据集,可能无法全面反映所有TEM图像的特性 | 探讨不同归一化方法对TEM图像语义分割深度学习模型性能的影响 | 高分辨率透射电子显微镜(TEM)图像 | 计算机视觉 | NA | 深度学习 | U-Net, ResNet | 图像 | 两个不同的数据集 |
8231 | 2025-02-20 |
A dataset for surface defect detection on complex structured parts based on photometric stereo
2025-Feb-16, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-025-04454-6
PMID:39956811
|
研究论文 | 本文提出了一种基于深度学习和光度立体视觉的表面缺陷检测技术,并创建了金属表面缺陷数据集(MSDD) | 提出了一种新的缺陷检测技术,结合了光度立体视觉和深度学习,并创建了一个包含多种缺陷类型的金属表面缺陷数据集 | NA | 解决工业缺陷检测中的阴影和表面反射问题,特别是在非平面零件上的检测 | 金属表面缺陷 | 计算机视觉 | NA | 光度立体视觉 | FCOS, YOLOv5, YOLOv8, RT-DETR | 图像 | 138,585张单通道图像和9,239张混合图像 |
8232 | 2025-02-20 |
Helmet material design for mitigating traumatic axonal injuries through AI-driven constitutive law enhancement
2025-Feb-16, Communications engineering
DOI:10.1038/s44172-025-00370-0
PMID:39956866
|
研究论文 | 本文通过AI驱动的本构定律增强,优化头盔衬里材料设计,以减少创伤性轴索损伤 | 利用深度学习模型预测不同衬里材料保护下假人头部的峰值旋转速度和加速度,并通过材料优化显著降低脑损伤风险 | 研究主要针对250至500焦耳冲击能量范围内的脑损伤风险,未涵盖所有可能的冲击条件 | 提高运动头盔对脑损伤的保护效率 | 头盔衬里材料 | 机器学习 | 脑损伤 | 深度学习 | 深度学习模型 | 模拟数据 | NA |
8233 | 2025-02-20 |
Global Daily Column Average CO2 at 0.1° × 0.1° Spatial Resolution Integrating OCO-3, GOSAT, CAMS with EOF and Deep Learning
2025-Feb-14, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-024-04135-w
PMID:39952969
|
研究论文 | 本研究通过整合CAMS、GOSAT和OCO-3卫星数据,利用DINEOF和DINCAE方法重建了高时空分辨率的全球二氧化碳柱平均浓度数据集 | 结合DINEOF和DINCAE两种先进的数据重建方法,填补了卫星观测数据中的缺失,生成了高分辨率、无间隙的全球二氧化碳柱平均浓度数据集 | 未提及具体的数据覆盖时间范围或长期稳定性验证 | 解决卫星观测数据中的缺失问题,生成高时空分辨率的全球二氧化碳分布数据 | 全球二氧化碳柱平均浓度 | 机器学习 | NA | DINEOF, DINCAE | 卷积自编码器 | 卫星观测数据 | 整合了CAMS、GOSAT和OCO-3卫星的观测数据 |
8234 | 2025-02-20 |
Predicting early recurrence in locally advanced gastric cancer after gastrectomy using CT-based deep learning model: a multicenter study
2025-Feb-01, International journal of surgery (London, England)
DOI:10.1097/JS9.0000000000002184
PMID:39715142
|
研究论文 | 本研究开发了一种基于术前多期CT图像的深度学习模型(DLER MLP),用于预测局部晚期胃癌(LAGC)患者的早期复发,并探讨了该模型的生物学基础 | 结合DenseNet169和多期2.5D CT图像开发了DLER模型,并整合临床因素构建了DLER MLP分类器,显著提高了早期复发的预测性能 | 研究为回顾性设计,可能存在选择偏倚,且样本来源仅限于三个医疗中心和TCIA数据库 | 开发一种基于CT图像的深度学习模型,用于预测局部晚期胃癌患者的早期复发,并优化治疗策略 | 局部晚期胃癌(LAGC)患者 | 数字病理学 | 胃癌 | RNA测序 | DenseNet169, 多层感知器(MLP) | CT图像 | 620名LAGC患者,来自三个医疗中心和TCIA数据库 |
8235 | 2025-02-20 |
Necessity and impact of specialization of large foundation model for medical segmentation tasks
2025-Jan, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17470
PMID:39431952
|
研究论文 | 本文探讨了大型基础模型在医学图像分割任务中的专业化需求及其影响,评估了MedSAM及其轻量版LiteMedSAM在盆腔MR图像分割中的表现 | 通过评估现成的医学基础模型MedSAM在特定医学图像分割任务中的表现,揭示了进一步专业化微调的必要性和性能提升 | 现成的MedSAM和LiteMedSAM在非连续或非凸结构上的表现较差,且不同边界框输入的提示方案影响有限 | 评估大型基础模型在医学图像分割中的临床效用,并探索通过专业化微调提升性能的潜力 | 盆腔MR图像中的解剖结构 | 计算机视觉 | NA | 深度学习 | MedSAM, LiteMedSAM, nnU-Net | 图像 | 589张盆腔MR图像,80%用于训练,20%用于测试 |
8236 | 2025-02-20 |
Investigating the Use of Generative Adversarial Networks-Based Deep Learning for Reducing Motion Artifacts in Cardiac Magnetic Resonance
2025, Journal of multidisciplinary healthcare
IF:2.7Q2
DOI:10.2147/JMDH.S492163
PMID:39963324
|
研究论文 | 本文评估了基于生成对抗网络(GANs)的深度学习技术在减少心脏磁共振(CMR)电影序列中运动伪影方面的有效性 | 首次将GANs应用于CMR电影序列中的运动伪影减少,展示了其在临床应用中优化CMR运动伪影管理的潜力 | 研究主要基于模拟的运动伪影数据,真实世界数据的样本量相对较小 | 评估GANs在减少CMR电影序列中运动伪影方面的有效性 | 心脏磁共振(CMR)电影序列中的运动伪影 | 计算机视觉 | 心血管疾病 | 深度学习 | GAN | 图像 | 2000对清晰和模糊图像用于训练,200对用于测试,100张模拟运动伪影图像和37张真实世界运动伪影图像用于评估 |
8237 | 2025-02-20 |
Quantitative analysis of the dexamethasone side effect on human-derived young and aged skeletal muscle by myotube and nuclei segmentation using deep learning
2024-12-26, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btae658
PMID:39752317
|
研究论文 | 本文提出了一种使用深度学习和后处理技术对人类来源的年轻和老年骨骼肌中地塞米松副作用进行定量分析的新方法 | 通过同时进行肌管和细胞核分割,结合后处理技术,提高了分析的准确性和一致性 | NA | 定量分析地塞米松对人类来源的年轻和老年骨骼肌的副作用 | 人类来源的年轻和老年骨骼肌细胞 | 计算机视觉 | NA | 深度学习 | NA | 图像 | NA |
8238 | 2025-02-20 |
Development of a deep learning algorithm for Paneth cell density quantification for inflammatory bowel disease
2024-Dec, EBioMedicine
IF:9.7Q1
DOI:10.1016/j.ebiom.2024.105440
PMID:39536395
|
研究论文 | 本文开发了一种深度学习算法,用于量化炎症性肠病中潘氏细胞密度,以作为疾病预后的生物标志物 | 创新点在于使用深度学习技术自动量化潘氏细胞密度,显著提高了量化效率和准确性 | 研究的局限性在于样本量相对较小,且仅基于回顾性数据,需要进一步的前瞻性研究验证 | 研究目的是开发一种深度学习工具,用于量化潘氏细胞密度,作为炎症性肠病的预测生物标志物 | 研究对象为患有或不患有炎症性肠病的患者的回肠组织样本 | 数字病理学 | 炎症性肠病 | 深度学习 | U-net | 图像 | 190例患者(142例克罗恩病患者和48例非炎症性肠病患者) |
8239 | 2025-02-20 |
Coronary Artery Stenosis and High-Risk Plaque Assessed With an Unsupervised Fully Automated Deep Learning Technique
2024-Sep, JACC. Advances
DOI:10.1016/j.jacadv.2024.100861
PMID:39372456
|
研究论文 | 本研究开发并验证了一种全自动深度学习系统,用于在冠状动脉CT血管造影(CCTA)上评估狭窄程度和高风险斑块(HRP) | 提出了一种全自动无监督的深度学习系统,能够快速评估狭窄程度和HRP,具有很好的诊断性能 | 需要进一步验证在更大样本和更多中心的应用效果 | 开发并验证一种全自动深度学习系统,用于评估冠状动脉狭窄和高风险斑块 | 冠状动脉狭窄和高风险斑块 | 数字病理 | 心血管疾病 | CCTA | 深度学习 | 图像 | 570名患者用于训练,769名患者(3,012条血管)用于狭窄程度测试,45名患者(325条血管)用于HRP测试 |
8240 | 2025-02-20 |
CRISPR-Enhanced Photocurrent Polarity Switching for Dual-lncRNA Detection Combining Deep Learning for Cancer Diagnosis
2024-08-13, Analytical chemistry
IF:6.7Q1
DOI:10.1021/acs.analchem.4c02617
PMID:39092917
|
研究论文 | 本文开发了一种新型CRISPR/Cas13a增强的光电流极性转换光电化学(PEC)生物传感器,用于联合检测双长链非编码RNA(lncRNA),并结合深度学习(DL)辅助癌症诊断 | 结合CRISPR/Cas13a技术和深度学习,开发了一种新型光电化学生物传感器,用于双lncRNA的联合检测和癌症早期智能诊断 | 未提及具体局限性 | 开发一种新型生物传感器,用于双lncRNA的联合检测和癌症早期智能诊断 | 长链非编码RNA(lncRNA) | 生物传感器 | 癌症 | CRISPR/Cas13a技术,光电化学(PEC)技术,深度学习(DL) | 深度学习模型 | 光电化学数据 | 全血样本 |