本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8281 | 2025-02-04 |
Prediction of protein-ligand binding affinity via deep learning models
2024-01-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae081
PMID:38446737
|
综述 | 本文综述了用于预测蛋白质-配体结合亲和力的计算方法,特别是基于深度学习的模型 | 探讨了深度学习模型在预测蛋白质-配体结合亲和力方面的潜力,并指出了当前模型的局限性 | 当前深度学习模型面临低质量数据库、不准确的输入表示和不合适的模型架构等限制 | 准确预测蛋白质-配体结合亲和力,以用于药物筛选和优化 | 蛋白质-配体结合亲和力 | 计算机辅助药物设计 | NA | 深度学习 | 深度学习模型 | 蛋白质-配体结合数据 | NA |
8282 | 2025-02-04 |
Self-supervised deep learning of gene-gene interactions for improved gene expression recovery
2024-01-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae031
PMID:38349062
|
研究论文 | 本文提出了一种自监督深度学习框架,利用基因-基因相互作用来改进基因表达恢复的准确性 | 创新点在于将基因重新定位到2D网格中,以反映其相互作用关系,并采用自监督2D卷积神经网络从空间配置的基因中提取上下文特征,填补缺失的基因表达值 | 需要进一步验证在实际生物样本中的广泛适用性 | 提高单细胞RNA测序数据中基因表达恢复的准确性 | 单细胞RNA测序数据中的基因表达 | 机器学习 | NA | 单细胞RNA测序(scRNA-seq) | 2D卷积神经网络(CNN) | 基因表达数据 | 模拟和实验scRNA-seq数据集 |
8283 | 2025-02-04 |
scAMAC: self-supervised clustering of scRNA-seq data based on adaptive multi-scale autoencoder
2024-01-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae068
PMID:38426327
|
研究论文 | 本文提出了一种基于自适应多尺度自编码器的自监督聚类方法scAMAC,用于单细胞RNA测序(scRNA-seq)数据的分析 | scAMAC利用多尺度注意力机制融合编码器、隐藏层和解码层的特征信息,探索同一尺度内的细胞相关性并捕捉跨尺度的深层特征,同时采用自适应反馈机制监督多尺度自编码器的参数更新 | 未明确提及具体局限性 | 开发一种新的自监督聚类方法,以更好地分析scRNA-seq数据并理解高级生物过程 | 单细胞RNA测序(scRNA-seq)数据 | 机器学习 | NA | 单细胞RNA测序(scRNA-seq) | 自适应多尺度自编码器 | 基因表达数据 | 未明确提及具体样本数量 |
8284 | 2025-02-04 |
Diff-AMP: tailored designed antimicrobial peptide framework with all-in-one generation, identification, prediction and optimization
2024-01-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae078
PMID:38446739
|
研究论文 | 本文介绍了一种名为Diff-AMP的深度学习框架,用于自动化生成、识别、预测和优化抗菌肽(AMPs) | 创新性地将动力学扩散和注意力机制整合到强化学习框架中,用于高效生成AMPs,并采用预训练和迁移学习策略进行精确识别和筛选 | 未明确提及具体局限性 | 开发一个集成深度学习框架,以自动化生成、识别、预测和优化抗菌肽(AMPs) | 抗菌肽(AMPs) | 机器学习 | NA | 深度学习、强化学习、预训练、迁移学习 | 卷积神经网络(CNN)、强化学习 | 肽序列数据 | 未明确提及具体样本数量 |
8285 | 2025-02-04 |
VirGrapher: a graph-based viral identifier for long sequences from metagenomes
2024-01-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae036
PMID:38343326
|
研究论文 | 本文提出了一种基于图卷积网络(GCN)的病毒识别工具VirGrapher,用于从宏基因组中识别长病毒序列 | VirGrapher通过构建长序列中短子序列之间的关系,改进了现有深度学习方法在识别长病毒序列时的性能 | 未提及具体局限性 | 提高从宏基因组中识别长病毒序列的准确性 | 宏基因组中的长病毒序列 | 生物信息学 | NA | 图卷积网络(GCN) | GCN | 序列数据 | 未提及具体样本数量 |
8286 | 2025-02-04 |
Should we really use graph neural networks for transcriptomic prediction?
2024-01-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae027
PMID:38349060
|
研究论文 | 本文通过基准测试评估了图神经网络(GNN)在转录组预测中的表现,并与更标准的机器学习方法进行了比较 | 首次提供了关于GNN在转录组预测中成本与效益权衡的完整且可重复的基准测试 | 研究仅基于有限的模拟数据集,可能无法完全反映真实世界数据的复杂性 | 评估图神经网络在转录组预测中的有效性 | 基因表达数据 | 生物信息学 | NA | 图神经网络(GNN) | GNN | 基因表达数据 | 有限的模拟数据集 |
8287 | 2025-02-04 |
Cracking the black box of deep sequence-based protein-protein interaction prediction
2024-01-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae076
PMID:38446741
|
研究论文 | 本文系统研究了基于深度学习的蛋白质-蛋白质相互作用预测模型对数据泄露、序列相似性和节点度信息的依赖性,并与基础机器学习模型进行了比较 | 揭示了随机分割训练集和测试集导致性能高估的问题,并提出了避免数据泄露的方法,强调了未来改进应相对于基线方法进行报告 | 预测对于与已研究蛋白质序列相似性低的蛋白质仍然是一个未解决的问题,需要进一步的实验研究和更好的计算方法 | 评估和比较基于深度学习的蛋白质-蛋白质相互作用预测模型的性能 | 蛋白质-蛋白质相互作用 | 机器学习 | NA | 深度学习 | 深度学习模型 | 序列数据 | NA |
8288 | 2025-02-04 |
SuperCUT, an unsupervised multimodal image registration with deep learning for biomedical microscopy
2024-01-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae029
PMID:38483256
|
研究论文 | 本文提出了一种名为SuperCUT的无监督多模态图像配准方法,利用深度学习技术解决生物医学显微镜图像配准问题 | 提出了一种无需人工标注的无监督多模态图像配准管道,结合风格迁移技术,实现了与有监督方法相当的配准精度 | 需要进一步验证在更多类型生物样本和显微镜模态上的适用性 | 解决生物医学显微镜图像的多模态配准问题,以实现不同图像模态的相关分析 | 生物医学显微镜图像 | 计算机视觉 | NA | 深度学习 | NA | 图像 | 四种不同类型的生物问题,涉及不同的显微镜模态 |
8289 | 2025-02-04 |
Deep learning in spatially resolved transcriptfomics: a comprehensive technical view
2024-01-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae082
PMID:38483255
|
研究论文 | 本文深入探讨了深度学习在空间分辨转录组学(SRT)中的应用,分析了其优势、局限性和未来改进方向 | 本文首次系统地评估了深度学习在SRT中的应用,并提出了未来研究方向,如结合生物进化信息的处理和微小组织图像片段的深入分析 | 深度学习在SRT中的应用仍面临挑战,如批次效应的消除、数据标准化技术的完善以及基因表达中的过度离散和零膨胀模式的应对 | 评估深度学习在空间分辨转录组学中的应用,并提出未来研究方向 | 空间分辨转录组学数据 | 数字病理学 | NA | 空间分辨转录组学(SRT) | 深度学习 | 基因表达矩阵、空间细节、组织学图像 | NA |
8290 | 2025-02-04 |
Enhancer-MDLF: a novel deep learning framework for identifying cell-specific enhancers
2024-01-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae083
PMID:38485768
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
8291 | 2025-02-04 |
Leveraging deep learning for toxic comment detection in cursive languages
2024, PeerJ. Computer science
DOI:10.7717/peerj-cs.2486
PMID:39896410
|
研究论文 | 本文提出了一种新的深度学习模型,用于检测乌尔都语中的有毒评论,通过使用transformer进行文本的二元分类 | 提出了一种新的模型来识别乌尔都语句子中的显著特征,并使用transformer进行有毒评论的检测 | 乌尔都语作为一种低资源语言,其复杂性和不规则性增加了检测难度 | 开发一种工具来检测乌尔都语中的有毒评论,以保护社区免受其负面影响 | 乌尔都语中的有毒评论 | 自然语言处理 | NA | 深度学习 | transformer, BERT, GPT-2 | 文本 | NA |
8292 | 2025-02-04 |
Digital labeling for 3D histology: segmenting blood vessels without a vascular contrast agent using deep learning
2023-Jun-01, Biomedical optics express
IF:2.9Q2
DOI:10.1364/BOE.480230
PMID:37342724
|
研究论文 | 本文介绍了一种名为'数字标记'的方法,利用深度学习在无需血管对比剂的情况下,仅基于自发荧光信号和核染色(DAPI)对3D组织中的血管进行分割 | 创新点在于使用基于U-net架构的深度学习神经网络,并采用回归损失而非常见的分割损失,以提高小血管的检测精度 | 未来需要验证该方法是否适用于其他生物结构的分割 | 研究目的是开发一种无需血管对比剂即可对3D组织中的血管进行分割的方法 | 研究对象是3D组织中的血管 | 数字病理学 | NA | 光学组织透明化和3D荧光显微镜 | U-net | 3D图像 | NA |
8293 | 2025-02-04 |
Self-supervised semantic segmentation of retinal pigment epithelium cells in flatmount fluorescent microscopy images
2023-04-03, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btad191
PMID:37067486
|
研究论文 | 本文提出了一种自监督语义分割方法(S4),用于视网膜色素上皮(RPE)细胞在荧光显微镜图像中的分割,以支持RPE衰老研究中的大规模细胞形态分析 | 开发了一种自监督学习策略,结合重建和成对表示损失以及形态学损失,用于训练具有编码器-解码器架构的语义分割网络,并提出了一种新的图像增强算法(AugCut)以提高网络训练性能 | 尽管方法表现出色,但仍依赖于高质量的图像数据,且自监督学习策略的泛化能力需要进一步验证 | 提高视网膜色素上皮(RPE)细胞在荧光显微镜图像中的分割精度,以支持RPE衰老研究 | 视网膜色素上皮(RPE)细胞 | 计算机视觉 | 老年疾病 | 自监督学习 | 编码器-解码器架构 | 图像 | 大量荧光显微镜图像 |
8294 | 2025-02-03 |
A review on real time implementation of soft computing techniques in thermal power plant
2025-Feb, Network (Bristol, England)
DOI:10.1080/0954898X.2024.2429721
PMID:39601783
|
综述 | 本文综述了2019年至2023年间关于利用软计算技术(包括AI-ML和DL)提高热电厂生产力的研究 | 提供了对现有研究的全面总结,并评估了传统AI方法在提高热电厂生产力方面的有效性 | 仅限于2019年至2023年间的研究,可能未涵盖所有相关研究 | 提高热电厂的生产力 | 热电厂 | 机器学习 | NA | AI-ML, DL | NA | NA | NA |
8295 | 2025-02-03 |
Ultra-low-dose coronary CT angiography via super-resolution deep learning reconstruction: impact on image quality, coronary plaque, and stenosis analysis
2025-Feb-01, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11399-2
PMID:39891682
|
研究论文 | 本研究探讨了超分辨率深度学习重建(SR-DLR)在冠状动脉CT血管造影(CCTA)中减少辐射暴露的能力,并评估其对图像质量、冠状动脉斑块定量和表征以及狭窄严重性分析的影响 | 使用SR-DLR算法在CCTA中实现了60%的辐射剂量减少,同时保持了高图像质量和在冠状动脉斑块及狭窄分析中的优异表现 | 样本量较小,仅包括50名患者,且未进行长期随访以评估SR-DLR的长期效果 | 评估SR-DLR在CCTA中减少辐射剂量的能力及其对图像质量和临床分析的影响 | 50名接受低剂量(LD)和超低剂量(ULD)CCTA扫描的患者 | 医学影像 | 心血管疾病 | 超分辨率深度学习重建(SR-DLR) | 深度学习 | 医学影像 | 50名患者 |
8296 | 2025-02-03 |
Normative values for lung, bronchial sizes, and bronchus-artery ratios in chest CT scans: from infancy into young adulthood
2025-Feb-01, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11367-w
PMID:39891681
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
8297 | 2025-02-03 |
Hybrid deep learning based stroke detection using CT images with routing in an IoT environment
2025-Feb-01, Network (Bristol, England)
DOI:10.1080/0954898X.2025.2452280
PMID:39893512
|
研究论文 | 本文提出了一种基于混合深度学习的CT图像中风检测方法,结合物联网技术进行数据传输 | 提出了一种新的Jaccard_Residual SqueezeNet模型,用于从CT图像中预测中风,并结合物联网技术进行数据传输 | 未提及具体的研究局限性 | 提高中风病变的早期检测和准确分割,以改善治疗效果和减少长期残疾 | CT图像中的中风病变 | 计算机视觉 | 中风 | CT成像 | Jaccard_Residual SqueezeNet | 图像 | 未提及具体样本数量 |
8298 | 2025-02-03 |
Statin use and longitudinal bone marrow lesion burden: analysis of knees without osteoarthritis from the Osteoarthritis Initiative study
2025-Jan-31, Skeletal radiology
IF:1.9Q3
DOI:10.1007/s00256-025-04878-6
PMID:39890641
|
研究论文 | 本研究探讨了他汀类药物使用与无骨关节炎参与者膝关节骨髓病变(BML)体积纵向变化之间的关系 | 首次在无基线膝关节骨关节炎的参与者中,使用深度学习算法定量测量MRI基础上的BML体积,并分析他汀类药物使用对BML体积变化的影响 | 研究仅针对无基线膝关节骨关节炎的参与者,可能不适用于已有骨关节炎的患者 | 确定他汀类药物使用与无放射学膝关节骨关节炎参与者中基于MRI的BML体积纵向变化之间的关联 | 无放射学膝关节骨关节炎的参与者 | 数字病理学 | 骨关节炎 | MRI, 深度学习算法 | 深度学习 | 图像 | 1502个膝关节(751个他汀类药物使用者和751个非使用者) |
8299 | 2025-02-03 |
DICOM LUT is a Key Step in Medical Image Preprocessing Towards AI Generalizability
2025-Jan-31, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01418-5
PMID:39890738
|
研究论文 | 本研究探讨了医学图像预处理对深度学习模型性能的影响,特别是直方图均衡化(HE)和感兴趣值查找表(VOI-LUT)变换在胸部X光片(CXR)中的应用 | 揭示了直方图均衡化增强对模型性能的显著影响,特别是在泛化能力方面,并指出仅使用HE增强数据集训练的模型在外部验证集上表现较差,表明可能存在过拟合和信息丢失 | 研究仅针对胸部X光片,未涵盖其他类型的医学图像 | 探讨医学图像预处理技术对深度学习模型性能的影响,特别是对泛化能力的影响 | 胸部X光片(CXR) | 计算机视觉 | 肺气肿 | 直方图均衡化(HE)和感兴趣值查找表(VOI-LUT)变换 | 深度学习分类器 | 图像 | 内部CXR数据集生成的两个基线数据集,并在两个外部数据集上进行评估 |
8300 | 2025-02-03 |
MMnc: Multi-modal interpretable representation for non-coding RNA classification and class annotation
2025-Jan-31, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btaf051
PMID:39891346
|
研究论文 | 本文介绍了一种名为MMnc的可解释深度学习方法,用于将非编码RNA分类到功能组中 | MMnc利用基于注意力的多模态数据集成方法,整合序列、二级结构和表达等多种数据源,确保学习有意义的表示,并处理部分样本中缺失的数据源 | NA | 旨在通过深度学习技术对非编码RNA进行功能分类和注释 | 非编码RNA | 机器学习 | NA | 深度学习 | 基于注意力的多模态数据集成模型 | 序列、二级结构、表达数据 | NA |