深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24907 篇文献,本页显示第 8321 - 8340 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
8321 2025-02-12
Applying genetic algorithm to extreme learning machine in prediction of tumbler index with principal component analysis for iron ore sintering
2025-Feb-08, Scientific reports IF:3.8Q1
研究论文 本研究提出了一种结合遗传算法和极限学习机的集成模型,用于预测铁矿烧结过程中的转鼓指数 通过主成分分析降低数据维度,并结合遗传算法优化极限学习机,提高了模型的鲁棒性和泛化性能 模型仅在单一烧结厂的年度生产数据上进行了验证,可能缺乏广泛适用性 准确预测铁矿烧结过程中的转鼓指数,以优化烧结矿的质量 铁矿烧结过程中的转鼓指数 机器学习 NA 主成分分析(PCA),遗传算法(GA) 极限学习机(ELM),遗传算法优化的极限学习机(GA-ELM) 生产数据 一年内的实际生产数据
8322 2025-02-12
Molecular optimization using a conditional transformer for reaction-aware compound exploration with reinforcement learning
2025-Feb-08, Communications chemistry IF:5.9Q1
研究论文 本文提出了一种名为TRACER的框架,用于结合分子属性优化与合成路径生成,以解决现有分子生成模型忽视有机合成可行性的问题 TRACER框架通过条件transformer模型预测给定反应物在特定反应类型约束下的产物,有效生成了具有高活性的化合物 NA 设计具有理想属性的分子,以促进药物发现 分子生成与优化 机器学习 NA 条件transformer模型 transformer 分子结构数据 NA
8323 2025-02-12
Prediction of Intensive Care Length of Stay for Surviving and Nonsurviving Patients Using Deep Learning
2025-Feb-07, Critical care medicine IF:7.7Q1
研究论文 本文旨在开发一种深度学习模型,用于预测ICU患者的住院时间(LOS),并解决现有模型在幸存和非幸存患者之间的偏差问题 该模型首次考虑了幸存和非幸存患者之间的住院时间差异,并解决了文档偏差问题,从而改进了ICU的基准测试 模型在非幸存患者中的预测性能相对较低,R2值仅为0.23 开发一种能够更公平地评估ICU护理的住院时间预测模型 ICU患者的住院时间 机器学习 NA 深度学习 深度学习框架 患者特征、生命体征和实验室数据 669,876次ICU入院,涉及628,815名患者,来自194家美国医院的329个ICU
8324 2025-02-12
Wastewater quality prediction based on channel attention and TCN-BiGRU model
2025-Feb-01, Environmental monitoring and assessment IF:2.9Q3
研究论文 本文提出了一种结合通道注意力机制、时间卷积网络(TCN)和双向门控循环单元(BiGRU)的新模型CA-TCN-BiGRU,用于预测关键水质指标 提出了结合通道注意力机制、TCN和BiGRU的CA-TCN-BiGRU模型,能够同时预测多个水质指标,并在数据预处理和通道注意力机制的影响下显著提升预测精度 研究仅基于惠州一家污水处理厂的数据进行训练和测试,模型的泛化能力需要进一步验证 提高水质预测的准确性,为水资源管理提供科学依据 污水处理厂的水质数据 机器学习 NA 深度学习 CA-TCN-BiGRU 时间序列数据 来自惠州一家污水处理厂的数据
8325 2025-02-12
Inverse design of nanophotonic devices enabled by optimization algorithms and deep learning: recent achievements and future prospects
2025-Feb, Nanophotonics (Berlin, Germany)
综述 本文综述了纳米光子器件逆向设计的最新进展,探讨了人工智能和优化方法在自动化设计过程中的应用 结合人工智能和优化算法,提出了一种新的纳米光子器件逆向设计方法,突破了传统直觉驱动的前向设计方法的局限性 当前逆向设计方法仍面临一些挑战,如计算复杂性、设计空间探索的局限性等 探索纳米光子器件的逆向设计方法,以推动下一代光子学的发展 纳米光子器件 机器学习 NA 优化算法、深度学习 判别模型、生成模型、强化学习 NA NA
8326 2025-02-12
The Future of Breast Cancer Diagnosis in Japan with AI and Ultrasonography
2025-Jan-15, JMA journal IF:1.5Q2
综述 本文探讨了人工智能(AI)在日本乳腺癌诊断中的应用,特别是在超声成像中的关键进展 介绍了AI在乳腺超声诊断中的最新应用,包括由日本药品医疗器械管理局批准的AI辅助诊断程序 AI在乳腺癌诊断中的应用仍面临患者接受度和环境影响等挑战,需要医生负责任地监督其使用 提高乳腺癌诊断的准确性和效率 乳腺癌患者 数字病理学 乳腺癌 超声成像 机器学习和深度学习 图像 NA
8327 2025-02-12
Use of AI in Diagnostic Imaging and Future Prospects
2025-Jan-15, JMA journal IF:1.5Q2
研究论文 本文探讨了人工智能在医学影像诊断中的应用及其未来前景 利用AI构建三维模型进行手术模拟和导航,提高手术精度和护理质量 未提及具体的技术局限或数据限制 研究AI在医学影像诊断中的应用及其对医疗实践的改进 术前影像数据、电子病历、疾病进展和并发症预测 数字病理 NA 深度学习、自然语言处理 NA 影像数据、文本数据 NA
8328 2025-02-12
Clinical Prospects for Artificial Intelligence in Obstetrics and Gynecology
2025-Jan-15, JMA journal IF:1.5Q2
综述 本文综述了人工智能在妇产科领域的最新研究进展,包括围产期、生殖和妇科癌症等方面的应用 总结了人工智能在妇产科多个子领域的最新应用,如胎儿异常诊断、辅助生殖技术效率提升及妇科癌症的诊断与预后预测 涉及个人信息的处理、缺乏相关法律法规以及透明度问题 探讨人工智能在妇产科领域的临床应用前景 围产期、生殖和妇科癌症 医疗人工智能 妇科疾病 深度学习 NA 医学影像(如超声波、MRI)、组织病理学数据 NA
8329 2025-02-12
Deep Learning Applications in 12-lead Electrocardiogram and Echocardiogram
2025-Jan-15, JMA journal IF:1.5Q2
综述 本文综述了深度学习技术在12导联心电图和超声心动图中的应用及其在心血管医学领域的潜力 探讨了AI模型在心血管疾病筛查和机制研究中的创新应用,如通过单次心电图或超声心动图准确识别心肌病和先天性心脏病 未具体提及研究的局限性 更新AI在心电图和超声心动图中的应用成就,并展望AI在心血管护理和研究中的未来方向 心电图(ECG)和超声心动图数据 机器学习 心血管疾病 深度学习 NA 时间序列数据、图像数据 NA
8330 2025-02-12
Pathology Foundation Models
2025-Jan-15, JMA journal IF:1.5Q2
研究论文 本文探讨了病理学中基础模型(FMs)的应用及其在医疗领域的潜力 介绍了大规模AI模型(基础模型)在病理学中的新兴应用,包括疾病诊断、患者生存预后预测等 基础模型在临床应用中的挑战仍需解决 探讨基础模型在病理学中的应用及其对精准和个性化医疗的促进作用 病理学中的基础模型及其在医疗领域的应用 数字病理学 NA 深度学习 基础模型(FMs) 图像 NA
8331 2025-02-12
Assessing the efficiency of pixel-based and object-based image classification using deep learning in an agricultural Mediterranean plain
2025-Jan-10, Environmental monitoring and assessment IF:2.9Q3
研究论文 本研究比较了基于像素和基于对象的图像分类方法在Sentinel-2卫星影像中使用Deeplabv3深度学习方法的效率 通过高通过滤器增强图像清晰度,并结合Deeplabv3深度学习模型,评估了基于像素和基于对象分类方法的效率 研究结果依赖于训练数据的质量,且仅针对地中海平原的农业环境 评估基于像素和基于对象的图像分类方法在卫星影像解释中的效率 Sentinel-2卫星影像 计算机视觉 NA 深度学习 Deeplabv3 卫星影像 NA
8332 2025-02-12
Drawing as a means to characterize memory and cognition
2025-Jan, Memory & cognition IF:2.2Q2
研究论文 本文探讨了绘画作为研究记忆和认知的工具,展示了其在心理学研究中的应用 绘画作为一种自然主义的研究工具,提供了从感知表达到元认知表达的丰富信息,并揭示了多种认知过程的整合 NA 探讨绘画在心理学研究中的应用,揭示其对记忆、注意力、数学推理等认知过程的影响 儿童、年轻人、老年人以及特殊人群(如盲人、顺行性遗忘症患者、失用症患者和语义性痴呆患者) 心理学 NA 心理物理学实验、深度学习、神经影像学 NA NA 25项研究,涉及不同年龄段和特殊人群
8333 2025-02-12
The Efficacy of Artificial Intelligence in the Detection and Management of Atrial Fibrillation
2025-Jan, Cureus
系统综述 本文系统综述了人工智能在心房颤动(AF)风险预测、监测和管理中的应用 首次全面评估了人工智能与心房颤动的交叉领域,并总结了AI在AF风险预测、监测和管理中的具体应用 AI工具的可靠性和一致性因数据异质性和方法学不一致性而存在差异,需要标准化、标记的数据集和前瞻性临床试验的验证 评估人工智能在心房颤动检测和管理中的有效性 心房颤动(AF) 机器学习 心血管疾病 机器学习模型,包括AI-ECG方法 最优时变机器学习模型,观察性医疗结果伙伴关系通用数据模型 医疗数据 39项符合纳入标准的研究,其中19项研究关注AF风险预测,20项研究关注监测和管理
8334 2025-02-12
Stochasticity as a solution for overfitting-A new model and comparative study on non-invasive EEG prospects
2025, Frontiers in human neuroscience IF:2.4Q2
研究论文 本研究评估了多种机器学习和深度学习模型在公开数据集上的表现,提出了一种新的分类器BruteExtraTree以解决过拟合问题 提出了一种新的分类器BruteExtraTree,该分类器通过继承其基础模型ExtraTreeClassifier的中等随机性来有效解决过拟合问题 在独立于受试者的情况下,尽管新模型表现优异,但仍需大幅改进数据记录或噪声去除方法以提高实用性 开发实用的脑机接口(BCI)应用,特别是针对内部语音信号的处理 内部语音信号 机器学习 NA 机器学习和深度学习模型 BruteExtraTree, ShallowFBCSPNet EEG信号 公开数据集
8335 2025-02-12
Digital pathology and artificial intelligence in renal cell carcinoma focusing on feature extraction: a literature review
2025, Frontiers in oncology IF:3.5Q2
review 本文综述了数字病理学(DP)和人工智能(AI)在肾细胞癌(RCC)中的应用,特别是在特征提取方面的研究进展 本文填补了DP和AI在RCC中应用研究的综述空白,并展示了深度学习模型在RCC亚型分类、分子预测和生存预测中的高准确率 本文主要基于现有文献进行综述,未涉及新的实验数据或模型开发 探讨DP和AI在RCC中的应用,特别是在特征提取方面的潜力 肾细胞癌(RCC)的病理图像和分子数据 数字病理学 肾细胞癌 深度学习 深度学习模型 病理图像 NA
8336 2025-02-12
Deep learning-assisted diagnosis of acute mesenteric ischemia based on CT angiography images
2025, Frontiers in medicine IF:3.1Q1
研究论文 本研究旨在开发一种基于CT血管造影(CTA)影像和临床数据的深度学习模型,用于诊断急性肠系膜缺血(AMI) 结合CTA影像和临床信息构建融合模型,显著提高了AMI的诊断准确性和效率 研究为回顾性研究,样本量相对较小(228例患者) 开发一种深度学习模型,用于诊断急性肠系膜缺血(AMI) 228例疑似AMI的患者 数字病理学 急性肠系膜缺血 CT血管造影(CTA) 深度学习模型 影像和临床数据 228例患者
8337 2025-02-12
A comparative analysis of the binary and multiclass classified chest X-ray images of pneumonia and COVID-19 with ML and DL models
2025, Open medicine (Warsaw, Poland)
研究论文 本文比较了机器学习和深度学习模型在胸部X光图像上对肺炎和COVID-19进行二分类和多分类的性能 使用ConvMixer模型在COVID-19和肺炎的分类任务中取得了最佳性能,并与其他模型进行了比较 研究结果在其他胸部X光图像数据库上的性能尚未充分验证 研究机器学习(ML)和深度学习(DL)模型在胸部X光图像上对COVID-19、肺炎(病毒性和细菌性)以及正常病例的分类性能 胸部X光图像 计算机视觉 COVID-19, 肺炎 图像分类 K-近邻, 逻辑回归, Visual Geometry Group-19, Vision transformer, ConvMixer 图像 NA
8338 2025-02-12
New rectum dose surface mapping methodology to identify rectal subregions associated with toxicities following prostate cancer radiotherapy
2025-Jan, Physics and imaging in radiation oncology
研究论文 本文提出了一种新的直肠剂量表面映射方法,用于识别与前列腺癌放疗后毒性相关的直肠亚区域 开发了一种标准化直肠轮廓并将其展开为2D圆柱表面图的方法,以识别与毒性相关的直肠亚区域 仅分析了1,048名患者的数据,且仅发现下后部区域与毒性显著相关 研究前列腺癌放疗后直肠毒性与剂量分布的关系 1,048名前列腺癌患者 数字病理学 前列腺癌 深度学习自动分割,圆柱映射,体素分析 NA 医学影像数据 1,048名前列腺癌患者
8339 2025-02-12
Artificial Intelligence - Blessing or Curse in Dentistry? - A Systematic Review
2024-Dec, Journal of pharmacy & bioallied sciences
系统综述 本文系统综述了人工智能在牙科各个领域的多样化应用 全面分析了人工智能在牙科中的优势和挑战,涵盖了诊断、治疗和患者结果等多个方面 数据隐私、牙科专业人员的工作替代问题以及确保安全性和有效性的全面验证和监管需求仍是主要挑战 探讨人工智能在牙科中的应用及其影响 牙科领域的人工智能应用 机器学习 NA 机器学习、深度学习 NA 文本 607篇出版物中筛选出13篇相关文献
8340 2025-02-12
The Hydronephrosis Severity Index guides paediatric antenatal hydronephrosis management based on artificial intelligence applied to ultrasound images alone
2024-10-01, Scientific reports IF:3.8Q1
研究论文 本文开发了一种基于深度学习模型的自动化肾积水严重指数(HSI),用于直接从肾脏超声图像预测手术干预的需求 首次应用深度学习模型于儿科肾脏超声图像,自动评估肾积水严重程度,并预测手术干预需求 研究仅在北美四家大型儿科医院进行,样本量相对较小(202名患者),且外部验证的样本量和多样性可能有限 开发一种自动化工具,帮助临床决策,减少对频繁随访的依赖 儿科肾积水患者的肾脏超声图像 数字病理学 肾积水 深度学习 深度学习模型 图像 202名患者
回到顶部