本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8341 | 2025-04-08 |
Personalized deep learning auto-segmentation models for adaptive fractionated magnetic resonance-guided radiation therapy of the abdomen
2025-Apr, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17580
PMID:39699250
|
研究论文 | 本研究探讨了利用患者特异性自动分割方法改进腹部癌症患者在分次磁共振引导放疗中的自动分割效果 | 提出了基于患者特异性数据的自动分割模型,通过整合治疗计划和先前分次的MR图像,优化了分次治疗中的自动分割效果 | 研究样本量有限(151名患者),且仅针对特定类型的腹部癌症 | 改进分次磁共振引导放疗中的自动分割方法,以减少手动轮廓校正的时间消耗 | 腹部癌症患者的分次磁共振引导放疗数据 | 数字病理 | 腹部癌症 | 磁共振成像(MRI) | 深度学习自动分割模型 | 图像 | 151名腹部癌症患者的151份计划MR图像和215份分次MR图像 |
8342 | 2025-04-08 |
Impact of deep learning reconstructions on image quality and liver lesion detectability in dual-energy CT: An anthropomorphic phantom study
2025-Apr, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17651
PMID:39887750
|
research paper | 评估深度学习图像重建(DLIR)在双能CT(DECT)中对图像质量和肝血管性病变检测的影响 | 首次在DECT中使用DLIR算法评估其对肝血管性病变检测的影响,并与传统重建方法进行比较 | 研究基于人体模型,未涉及真实患者数据,可能无法完全反映临床情况 | 评估DLIR在DECT中对图像质量和肝血管性病变检测的影响 | 模拟的肝血管性肝细胞癌(HCC)病变 | digital pathology | liver cancer | dual-energy CT (DECT), deep learning image reconstruction (DLIR) | DLIR | CT image | 一个人体模型(BMI为23 kg/m²),包含模拟的肝血管性病变 |
8343 | 2025-04-08 |
Multiscale Deep Learning for Detection and Recognition: A Comprehensive Survey
2025-Apr, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2024.3389454
PMID:38652624
|
综述 | 本文全面介绍了多尺度深度学习在目标检测和识别中的发展,构建了一个易于理解且强大的知识结构 | 综合介绍了多尺度深度学习的理论和方法,包括金字塔表示、尺度空间表示和多尺度几何表示,并比较了不同多尺度结构设计的性能 | 指出了多尺度深度学习中存在的几个开放问题和未来方向,但未提出具体的解决方案 | 探讨计算机视觉中的多尺度问题,特别是目标检测和识别中的多尺度表示 | 多尺度深度学习的理论和方法 | 计算机视觉 | NA | NA | CNN, Vision Transformers (ViTs) | 图像 | NA |
8344 | 2025-04-08 |
Deep learning-based multimodal CT/MRI image fusion and segmentation strategies for surgical planning of oral and maxillofacial tumors: A pilot study
2025-Mar-31, Journal of stomatology, oral and maxillofacial surgery
DOI:10.1016/j.jormas.2025.102324
PMID:40174752
|
研究论文 | 本研究评估了基于深度学习的多模态CT/MRI图像融合和分割策略在口腔颌面部肿瘤手术规划中的可行性和准确性 | 结合了三种融合模型和三种分割模型,生成了九种混合深度学习模型,并评估了它们在口腔颌面部肿瘤分割中的性能 | 样本量较小(30例患者),且为单中心研究,可能影响结果的普遍性 | 评估深度学习在多模态CT/MRI图像融合和分割中的应用,为口腔颌面部肿瘤的虚拟手术规划提供基础 | 30名口腔颌面部肿瘤患者 | 数字病理 | 口腔颌面部肿瘤 | CT/MRI扫描 | Elastix, ANTs, NiftyReg, nnU-Net, 3D UX-Net, U-Net | 医学影像(CT/MRI) | 30名口腔颌面部肿瘤患者 |
8345 | 2025-04-08 |
A Deep Learning Model of Histologic Tumor Differentiation as a Prognostic Tool in Hepatocellular Carcinoma
2025-Mar-12, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
IF:7.1Q1
DOI:10.1016/j.modpat.2025.100747
PMID:40086592
|
研究论文 | 本研究开发了一种基于深度学习的AI模型,用于量化肝细胞癌(HCC)肿瘤分化的组织学特征并预测癌症相关结果 | 首次使用AI模型量化HCC肿瘤分化的多个组织学特征,并证明其在预测HCC相关预后方面的优越性 | 研究样本量较小(99例HCC切除标本),需要更大样本验证 | 评估AI模型在量化HCC肿瘤分化特征和预测癌症相关结果方面的性能 | 肝细胞癌(HCC)切除标本 | 数字病理学 | 肝细胞癌 | 深度学习 | 监督学习AI模型 | 组织学图像 | 99例HCC切除标本 |
8346 | 2025-04-08 |
Predictive models for posttransplant diabetes mellitus in kidney transplant recipients using machine learning and deep learning approach: a nationwide cohort study from South Korea
2025-01-09, Kidney research and clinical practice
IF:2.9Q1
DOI:10.23876/j.krcp.24.113
PMID:40176402
|
研究论文 | 本研究利用机器学习和深度学习方法预测肾移植受者术后糖尿病(PTDM)的风险 | 首次在全国性队列研究中应用多种机器学习和深度学习模型预测PTDM,并比较其性能 | 研究仅基于韩国器官移植注册数据,可能不适用于其他人群 | 预测肾移植受者术后糖尿病的风险 | 肾移植受者 | 机器学习 | 糖尿病 | 机器学习、深度学习 | XGBoost, CatBoost, light gradient boosting machine, logistic regression | 临床数据 | 3,213名肾移植受者 |
8347 | 2025-04-08 |
Synthetic temporal bone CT generation from UTE-MRI using a cycleGAN-based deep learning model: advancing beyond CT-MR imaging fusion
2025-Jan, European radiology
IF:4.7Q1
DOI:10.1007/s00330-024-10967-2
PMID:39026063
|
研究论文 | 本研究开发了一种基于CycleGAN的深度学习模型,用于从超短回波时间磁共振成像(MRI)扫描生成合成颞骨计算机断层扫描(CT)图像 | 使用CycleGAN模型从MRI生成合成CT图像,解决了MRI在颞骨解剖标志定位上的固有局限性 | 对于五个主要解剖结构的生成成功率较低(24%至83%) | 开发一种深度学习模型,以生成合成颞骨CT图像,克服MRI在颞骨解剖标志定位上的局限性 | 颞骨MRI和CT图像 | 数字病理学 | NA | 点状编码时间减少与径向采集(PETRA)MRI | CycleGAN | 图像 | 102名患者(训练数据集54名,验证数据集48名) |
8348 | 2025-04-08 |
Deep learning-based 3D quantitative total tumor burden predicts early recurrence of BCLC A and B HCC after resection
2025-Jan, European radiology
IF:4.7Q1
DOI:10.1007/s00330-024-10941-y
PMID:39028376
|
研究论文 | 本研究评估了基于深度学习的自动化三维定量肿瘤负荷在MRI上预测肝细胞癌术后早期复发的潜力 | 首次使用深度学习辅助的自动化三维定量肿瘤负荷作为预测肝细胞癌术后早期复发的生物标志物,并改进了BCLC A和B期患者的亚分类 | 单中心回顾性研究,样本量有限(592例患者) | 预测肝细胞癌(HCC)术后早期复发(ER) | 接受切除术的BCLC A和B期肝细胞癌患者 | 数字病理学 | 肝细胞癌 | MRI | 深度学习 | 医学影像 | 592例患者(525例BCLC A期,67例BCLC B期) |
8349 | 2025-04-08 |
The value of deep learning-based X-ray techniques in detecting and classifying K-L grades of knee osteoarthritis: a systematic review and meta-analysis
2025-Jan, European radiology
IF:4.7Q1
DOI:10.1007/s00330-024-10928-9
PMID:38997539
|
meta-analysis | 本文通过系统综述和荟萃分析评估了基于深度学习的X射线技术在检测和分类膝关节骨关节炎K-L分级中的价值 | 首次对深度学习在膝关节骨关节炎K-L分级中的敏感性进行了全面的荟萃分析 | 对于K-L1和K-L2分级的敏感性仍需提高,且需要更多研究数据支持临床实践 | 评估深度学习技术在膝关节骨关节炎X射线诊断中的敏感性和临床价值 | 膝关节骨关节炎的X射线图像 | digital pathology | geriatric disease | deep learning | NA | image | 62,158张X射线图像(包括22,388张K-L0,13,415张K-L1,15,597张K-L2,7,768张K-L3和2,990张K-L4) |
8350 | 2025-04-08 |
Deep learning in pulmonary nodule detection and segmentation: a systematic review
2025-Jan, European radiology
IF:4.7Q1
DOI:10.1007/s00330-024-10907-0
PMID:38985185
|
系统性综述 | 本文系统性地综述了深度学习在肺结节检测和分割中的应用 | 填补了现有文献中的方法学空白和偏见,并强调了标准化数据处理和代码共享的重要性 | 仅包含九项符合纳入标准的研究,可能存在样本量不足的问题 | 比较使用深度学习技术的肺结节检测和分割方法 | 肺结节 | 计算机视觉 | 肺癌 | 深度学习 | CNN | 医学影像 | 九项研究,主要使用公共数据集如Lung Image Database Consortium Image Collection和Image Database Resource Initiative |
8351 | 2025-04-08 |
P253 Next-generation phenotyping facilitates the identification of structural brain malformations in rare disorders through computational brain MRI analysis
2025, Genetics in medicine open
DOI:10.1016/j.gimo.2025.103424
PMID:40191138
|
研究论文 | 本研究提出了一种基于深度学习的下一代表型分析(NGP)方法,用于检测脑部结构畸形及其相关疾病,为临床医生提供诊断支持 | 首次将NGP应用于脑部MRI数据,通过大规模脑部MRI图像数据集学习模式,识别结构性畸形 | 初步分析仅针对两种特定疾病,需要扩展到更广泛的遗传疾病谱 | 开发一种能够识别罕见疾病中脑部结构畸形的计算方法 | 罕见疾病中的脑部结构畸形 | 数字病理学 | 神经发育疾病 | MRI | ResNet-50 | 图像 | 413张脑部MRI图像,涵盖56种不同疾病 |
8352 | 2025-04-08 |
MultiSC: a deep learning pipeline for analyzing multiomics single-cell data
2024-Sep-23, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae492
PMID:39376034
|
research paper | 提出了一种名为MultiSC的深度学习流程,用于分析多组学单细胞数据 | 开发了一个新的流程MultiSC,利用多模态约束自编码器和基于矩阵分解的模型来整合多组学数据并预测转录因子调控的靶基因 | 未提及具体的数据处理或模型性能限制 | 解决多组学单细胞数据整合和分析工具缺乏的问题 | 多组学单细胞数据,包括基因表达、染色质可及性和转录因子蛋白表达 | machine learning | NA | NEAT-seq | multimodal constraint autoencoder, matrix factorization-based model (scMF), multivariate linear regression models | multiomics single-cell data | 未提及具体样本数量 |
8353 | 2025-04-08 |
Deep learning for intracranial aneurysm segmentation using CT angiography
2024-Jul-26, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad6372
PMID:39008990
|
研究论文 | 本研究采用两阶段深度学习方法,在计算机断层扫描血管造影图像中准确检测小动脉瘤(4-10毫米大小) | 提出了一种轻量级且快速的头部区域选择(HRS)算法和自适应的3D nnU-Net网络,用于分割动脉瘤,并将推理时间减少了50%以上 | 未提及 | 准确检测和分割小动脉瘤 | 计算机断层扫描血管造影图像中的小动脉瘤 | 计算机视觉 | 心血管疾病 | 计算机断层扫描血管造影(CTA) | 3D nnU-Net | 图像 | 956名患者来自6家医院和一个公共数据集,使用6台不同制造商的CT扫描仪获取 |
8354 | 2025-04-08 |
Evaluation of enzyme activity predictions for variants of unknown significance in Arylsulfatase A
2024-Jun-17, bioRxiv : the preprint server for biology
DOI:10.1101/2024.05.16.594558
PMID:38798479
|
research paper | 评估机器学习方法在预测未知意义变异(VUS)对芳基硫酸酯酶A(ARSA)基因功能影响方面的性能 | 一项由遗传学和编程训练营参与者开发的模型在预测性能上表现最佳,且深度学习方法的预测性能有显著提升 | 研究中仅使用了219个实验验证的错义VUS,样本量可能有限 | 评估机器学习方法在预测VUS功能影响方面的准确性及其在遗传和临床研究中的潜在应用 | 芳基硫酸酯酶A(ARSA)基因中的219个错义VUS | machine learning | NA | machine learning, deep learning | NA | genetic variants | 219个实验验证的错义VUS |
8355 | 2025-04-08 |
Critical assessment of missense variant effect predictors on disease-relevant variant data
2024-Jun-08, bioRxiv : the preprint server for biology
DOI:10.1101/2024.06.06.597828
PMID:38895200
|
研究论文 | 评估错义变异效应预测工具在疾病相关变异数据上的性能 | 通过CAGI6挑战赛评估多种错义变异效应预测工具,包括临床遗传学社区常用工具和最新开发的深度学习方法,并探讨了不同临床和研究应用场景下的性能表现 | 评估数据集中可能存在标签不平衡问题,且某些预测工具在区分致病性变异和极罕见良性变异时性能下降 | 评估错义变异效应预测工具的临床和研究实用性,并为未来改进提供方向 | 错义变异效应预测工具 | 生物信息学 | 遗传病 | 深度学习 | NA | 基因组数据 | 来自疾病相关数据库的罕见错义变异数据集 |
8356 | 2025-04-08 |
Multimodal Autoencoder Predicts fNIRS Resting State From EEG Signals
2022-07, Neuroinformatics
IF:2.7Q3
DOI:10.1007/s12021-021-09538-3
PMID:34378155
|
研究论文 | 介绍了一种深度学习架构,用于评估来自40名癫痫患者的多模态脑电图(EEG)和功能性近红外光谱(fNIRS)记录 | 首次展示了在静息状态下的人类癫痫大脑中,基于EEG频率振荡的功率谱幅度调制,从编码的神经数据(EEG)预测脑血流动力学(fNIRS)的可能性 | 研究仅限于癫痫患者,样本量为40人 | 研究EEG信号如何解码fNIRS信号,预测脑血流动力学 | 40名癫痫患者的EEG和fNIRS记录 | 机器学习 | 癫痫 | 功能性近红外光谱(fNIRS)和脑电图(EEG) | LSTM和CNN集成的多模态序列到序列自编码器 | EEG和fNIRS信号 | 40名癫痫患者 |
8357 | 2025-04-07 |
A deep learning model for multiclass tooth segmentation on cone-beam computed tomography scans
2025-Apr-05, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics
IF:2.7Q1
DOI:10.1016/j.ajodo.2025.02.014
PMID:40186597
|
研究论文 | 开发并验证了一种深度学习算法,用于从锥形束计算机断层扫描中自动创建人类牙齿的三维表面模型 | 提出了一种用于多类牙齿分割的深度学习模型,验证了人工智能在牙科影像分析中的有效性 | NA | 开发自动化的牙齿分割技术以提高牙科影像分析的精确度 | 人类牙齿 | 计算机视觉 | NA | 锥形束计算机断层扫描 | 深度学习 | 医学影像 | 210例扫描(140例训练集,40例验证集,30例测试集) |
8358 | 2025-04-07 |
Classification of ocular surface diseases: Deep learning for distinguishing ocular surface squamous neoplasia from pterygium
2025-Apr-05, Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
DOI:10.1007/s00417-025-06804-x
PMID:40186633
|
研究论文 | 本研究开发了一种深度学习模型,用于区分眼表鳞状上皮瘤(OSSN)和翼状胬肉(PTG)的裂隙灯照片 | 首次使用深度学习模型自动分割和分类OSSN与PTG的裂隙灯照片,并展示了较高的准确率 | 样本量相对较小(162例患者),且未提及模型在其他数据集上的泛化能力 | 开发一种能够准确区分OSSN和PTG的深度学习模型 | 眼表鳞状上皮瘤(OSSN)和翼状胬肉(PTG)患者 | 计算机视觉 | 眼科疾病 | 深度学习 | EfficientNet B7, GoogleNet | 图像 | 162例患者(77例OSSN,85例PTG) |
8359 | 2025-04-07 |
Deep learning-based estimation of respiration-induced deformation from surface motion: A proof-of-concept study on 4D thoracic image synthesis
2025-Apr-05, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17804
PMID:40186879
|
研究论文 | 提出一种非患者特定的级联集成模型(CEM),用于从表面运动估计呼吸引起的胸部组织变形 | 提出了一种不需要患者特定呼吸数据采样和额外训练的级联集成模型(CEM),用于估计胸部组织变形 | 研究仅基于模拟的表面运动和有限的4D-CT数据集进行验证 | 开发一种方法以减少4D-CT采集中的辐射暴露,同时保持图像质量 | 胸部组织变形和4D-CT图像合成 | 医学影像分析 | 胸部疾病 | 深度学习 | 级联集成模型(CEM) | 4D-CT图像 | 62个私有4D-CT数据集和80个公共4D-CT数据集 |
8360 | 2025-04-07 |
Deep learning assisted detection and segmentation of uterine fibroids using multi-orientation magnetic resonance imaging
2025-Apr-05, Abdominal radiology (New York)
DOI:10.1007/s00261-025-04934-8
PMID:40188260
|
research paper | 开发深度学习模型用于自动化检测和分割子宫肌瘤的多方位MRI图像 | 基于三维nnU-Net框架构建的模型,在子宫肌瘤的检测和分割中表现出色,特别是在临床相关病例中 | 未提及模型在小样本或不同类型肌瘤上的泛化能力 | 开发自动化检测和分割子宫肌瘤的深度学习模型 | 子宫肌瘤患者的多方位MRI图像 | digital pathology | uterine fibroids | MRI | nnU-Net | image | 内部数据集299名患者(训练集239名,内部测试集60名),外部数据集45名患者 |