本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8341 | 2025-02-12 |
Universal representations in cardiovascular ECG assessment: A self-supervised learning approach
2025-Mar, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2024.105742
PMID:39631267
|
研究论文 | 本研究开发并验证了一种自监督学习方法,用于从纵向收集的心电图数据中生成通用的心电图表示,适用于多种心血管评估 | 采用对比自监督学习方法从大规模未标记的心电图数据中学习有意义的表示,并将其应用于下游任务,特别是在小样本情况下显著提升了分类模型的性能 | 研究主要依赖于单一医疗机构的内部数据集,虽然也使用了外部公共数据集进行验证,但可能仍存在泛化性问题 | 开发一种自监督学习方法,用于生成通用的心电图表示,以提升心血管疾病评估的准确性和鲁棒性 | 1,684,298名成年患者的心电图数据 | 机器学习 | 心血管疾病 | 对比自监督学习 | 预训练模型 | 心电图数据 | 4,932,573条心电图数据,来自1,684,298名成年患者 |
8342 | 2025-02-12 |
Prediction of mortality in hemodialysis patients based on autoencoders
2025-Mar, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2024.105744
PMID:39642591
|
研究论文 | 本研究提出了一种基于自动编码器的血液透析患者死亡率预测模型,解决了短期数据不平衡和缺失数据特征的问题 | 利用高维数据空间中非缺失特征的流形结构和特征间的内在关系,推断缺失特征的值,并通过生成特征丢弃掩码模拟缺失数据分布,设计自适应特征提取模块 | 模型主要依赖于短期数据,可能无法完全捕捉长期数据中的复杂模式 | 评估血液透析患者在30至450天内的死亡率风险 | 终末期肾病患者 | 机器学习 | 肾病 | 自动编码器 | 自动编码器 | 临床数据 | 未明确说明样本数量 |
8343 | 2025-02-12 |
Multi-horizon event detection for in-hospital clinical deterioration using dual-channel graph attention network
2025-Mar, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2024.105745
PMID:39657403
|
研究论文 | 本文提出了一种端到端的深度学习架构,用于早期检测医院内的临床恶化事件 | 提出了双通道图注意力网络,结合多任务学习策略,能够显式学习多变量时间序列在特征和时间域上的相关性 | 实验仅在ICU收集的两个临床时间序列数据集上进行,可能限制了模型的泛化能力 | 实现医院内临床恶化事件的早期检测 | 医院内的临床恶化事件 | 机器学习 | NA | 深度学习 | 双通道图注意力网络 | 多变量时间序列 | 两个ICU收集的临床时间序列数据集 |
8344 | 2025-02-12 |
A systematic review on the impact of artificial intelligence on electrocardiograms in cardiology
2025-Mar, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2024.105753
PMID:39674006
|
系统综述 | 本文系统综述了人工智能在心电图分析中的应用及其对心脏病学诊断和治疗支持的影响 | 本文首次系统性地评估了AI、机器学习和深度学习在心电图分析中的应用,特别是在心律失常、心肌梗死和心力衰竭等心脏疾病的预测和诊断中的效果 | 研究仅限于2014年至2024年间的英文文献,可能忽略了其他语言或更早期的重要研究 | 探讨人工智能在心电图分析中的应用,以提高心脏病学的诊断准确性和治疗支持 | 心电图数据及其在心脏病学中的应用 | 机器学习 | 心血管疾病 | 机器学习(ML)、深度学习(DL) | CNN、RNN、混合模型 | 心电图数据 | 46项研究 |
8345 | 2025-02-12 |
Distinguishing the activity of flexor digitorum brevis and soleus across standing postures with deep learning models
2025-Mar, Gait & posture
IF:2.2Q2
DOI:10.1016/j.gaitpost.2024.12.014
PMID:39674063
|
研究论文 | 本研究利用深度学习模型区分不同站立姿势下趾短屈肌和比目鱼肌的肌电活动 | 首次使用深度卷积神经网络基于高密度表面肌电信号的时间和空间特征来分类站立姿势 | 研究仅针对健康年轻男性,样本多样性有限 | 探索趾短屈肌和比目鱼肌在不同站立姿势下的肌电活动调整 | 趾短屈肌和比目鱼肌的肌电活动 | 机器学习 | NA | 高密度表面肌电信号记录 | 深度卷积神经网络(CNN) | 肌电信号 | 健康年轻男性 |
8346 | 2025-02-12 |
Editorial Commentary: Thoughtful Application of Artificial Intelligence Technique Improves Diagnostic Accuracy and Supportive Clinical Decision-Making
2025-Mar, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association
IF:4.4Q1
DOI:10.1016/j.arthro.2024.12.009
PMID:39675394
|
评论 | 本文讨论了人工智能技术在医学影像中的应用,特别是在骨科领域,强调了深思熟虑的应用对于提高诊断准确性和支持临床决策的重要性 | 强调了人工智能技术在医学影像中应用的深思熟虑和透明性,提出了AI工具在临床医学中的逐步整合应提供附加的洞察力 | 未具体提及研究的局限性 | 探讨人工智能技术在医学影像中的应用,以提高诊断准确性和支持临床决策 | 医学影像,特别是骨科领域的影像 | 计算机视觉 | 骨科疾病 | 深度学习 | NA | 医学影像 | NA |
8347 | 2025-02-12 |
Real-time assistance in suicide prevention helplines using a deep learning-based recommender system: A randomized controlled trial
2025-Mar, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2024.105760
PMID:39705915
|
研究论文 | 本文通过随机对照试验评估了AI辅助工具在自杀预防热线对话中为咨询师提供实时帮助的有效性和可用性 | 使用基于BERT的句子嵌入生成建议,并通过余弦相似度呈现前5个聊天情境,为自杀预防热线提供实时AI辅助 | 工具在不适当的情境下频繁使用,咨询师在最佳时机使用工具的频率较低,可能缺乏使用AI辅助工具的熟练度或对系统的初始信任问题 | 评估AI辅助工具在自杀预防热线对话中为咨询师提供实时帮助的有效性和可用性 | 自杀预防热线的咨询师 | 自然语言处理 | 心理健康 | BERT, 余弦相似度 | BERT | 文本 | 48名咨询师(27名实验组,21名对照组),共评估了188个班次 |
8348 | 2025-02-12 |
Unsupervised tooth segmentation from three dimensional scans of the dental arch using domain adaptation of synthetic data
2025-Mar, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2024.105769
PMID:39721113
|
研究论文 | 本研究旨在通过领域适应技术,从3D口腔扫描中自动分割出不同牙弓形态的单个牙齿 | 使用领域适应技术,无需人工标注即可训练深度学习模型,从合成的3D牙弓扫描数据中分割牙齿 | 样本量较小,仅使用了20个合成牙弓扫描和16个自然牙弓扫描进行训练 | 实现从3D牙弓扫描中自动分割单个牙齿 | 3D牙弓扫描数据 | 计算机视觉 | NA | 领域适应技术,包括梯度反转层和Siamese网络 | PointNet, PointNet++ | 3D扫描数据 | 20个合成牙弓扫描和16个自然牙弓扫描 |
8349 | 2025-02-12 |
Applicability of the regression approach for histological multi-class grading in clear cell renal cell carcinoma
2025-Mar, Regenerative therapy
IF:3.4Q2
DOI:10.1016/j.reth.2025.01.011
PMID:39925965
|
研究论文 | 本文探讨了回归方法在透明细胞肾细胞癌多类别分级中的适用性 | 首次广泛研究了回归方法在多类别癌分级中的应用,并证明其在透明细胞肾细胞癌四类分级中的有效性 | 研究仅基于16张全片图像和11,826个组织学图像块,样本量相对较小 | 评估回归方法在多类别癌分级中的适用性 | 透明细胞肾细胞癌的组织学图像 | 数字病理学 | 肾癌 | 深度学习 | CNN(DenseNet-121和Inception-v3) | 图像 | 16张全片图像和11,826个组织学图像块 |
8350 | 2025-02-12 |
Correction to "DL 101: Basic Introduction to Deep Learning With Its Application in Biomedical Related Fields"
2025-Feb-28, Statistics in medicine
IF:1.8Q1
DOI:10.1002/sim.10349
PMID:39932330
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
8351 | 2025-02-12 |
Attention-Based Interpretable Multiscale Graph Neural Network for MOFs
2025-Feb-11, Journal of chemical theory and computation
IF:5.7Q1
DOI:10.1021/acs.jctc.4c01525
PMID:39841881
|
研究论文 | 本文提出了一种基于注意力的可解释多尺度图神经网络(MSAIGNN),用于金属有机框架(MOFs)的气体分离和存储性能预测 | 引入了多尺度晶体图的构建方法,通过基于不同距离范围内的原子间相互作用将晶体图分解为多个子图,并考虑了晶体的全局结构,提出了具有自注意力机制的图池化机制的MSAIGNN模型,该模型结合了三体键角信息,考虑了不同尺度的结构特征,并最小化了冗余相互作用的干扰 | 未明确提及具体局限性 | 研究目的是通过深度学习预测复杂多孔晶体结构(如MOFs)的性能 | 金属有机框架(MOFs) | 机器学习 | NA | 图神经网络(GNNs) | MSAIGNN(多尺度原子相互作用图神经网络) | 晶体图数据 | 未明确提及具体样本数量 |
8352 | 2025-02-12 |
QuanFormer: A Transformer-Based Precise Peak Detection and Quantification Tool in LC-MS-Based Metabolomics
2025-Feb-11, Analytical chemistry
IF:6.7Q1
DOI:10.1021/acs.analchem.4c04531
PMID:39868899
|
研究论文 | 本文介绍了一种基于Transformer架构的深度学习工具QuanFormer,用于在基于液相色谱-质谱联用的代谢组学分析中精确检测和量化峰信号 | QuanFormer结合了卷积神经网络(CNN)的特征提取能力和Transformer架构的全局计算能力,通过使用近20,000个标注的兴趣区域(ROIs)进行数据训练,实现了独特的预测,并在测试集上达到了96.5%的平均精度值 | 尽管QuanFormer在不重新训练的情况下能够区分真假峰的准确率超过90%,但其在更广泛数据集上的泛化能力仍需进一步验证 | 开发一种能够提高代谢组学分析中峰检测和量化准确性的工具 | 液相色谱-质谱联用(LC-MS)数据中的峰信号 | 机器学习 | 乳腺癌 | 液相色谱-质谱联用(LC-MS) | Transformer, CNN | 质谱数据 | 近20,000个标注的兴趣区域(ROIs) |
8353 | 2025-02-12 |
Carbon Dioxide Sensing Based on Off-Axis Integrated Cavity Absorption Spectroscopy Combined with the Informer and Multilayer Perceptron Models
2025-Feb-11, Analytical chemistry
IF:6.7Q1
DOI:10.1021/acs.analchem.4c06057
PMID:39882837
|
研究论文 | 本文提出了一种基于离轴积分腔输出光谱(OA-ICOS)和深度学习模型的二氧化碳传感器,结合Informer和多层感知器(MLP)模型进行光谱数据处理和浓度预测 | 结合Informer模型进行光谱时间序列滤波,并使用MLP模型直接从滤波后的光谱数据中提取特征并预测二氧化碳浓度,显著提高了信噪比和检测精度 | 未提及具体的数据集规模或实验环境的多样性,可能影响模型的泛化能力 | 提高基于光谱的二氧化碳传感器的检测精度和信噪比 | 二氧化碳光谱数据 | 光谱学 | NA | 离轴积分腔输出光谱(OA-ICOS) | Informer, 多层感知器(MLP) | 光谱时间序列数据 | 未提及具体样本数量 |
8354 | 2025-02-12 |
Deep Learning Radiomics Based on MRI for Differentiating Benign and Malignant Parapharyngeal Space Tumors
2025-Feb-11, The Laryngoscope
DOI:10.1002/lary.32043
PMID:39932109
|
研究论文 | 本研究旨在基于深度学习和传统放射组学特征建立一种预学术诊断工具,以指导咽旁间隙(PPS)肿瘤的临床决策 | 开发了一种结合深度学习和放射组学特征的深度放射组学(DLR)模型,用于区分PPS肿瘤的良恶性 | 研究为回顾性研究,可能存在选择偏差 | 建立一种预学术诊断工具,用于区分咽旁间隙(PPS)肿瘤的良恶性 | 217名PPS肿瘤患者 | 数字病理学 | 头颈部肿瘤 | MRI | 深度学习模型(DL)、传统放射组学模型(Rad)、深度放射组学模型(DLR) | 图像 | 217名患者(训练集145名,测试集72名) |
8355 | 2025-02-12 |
Eliminating the second CT scan of dual-tracer total-body PET/CT via deep learning-based image synthesis and registration
2025-Feb-11, European journal of nuclear medicine and molecular imaging
IF:8.6Q1
DOI:10.1007/s00259-025-07113-5
PMID:39932542
|
研究论文 | 本研究开发并验证了一种深度学习框架,旨在消除双示踪剂全身PET/CT成像中的第二次CT扫描 | 结合了注册生成对抗网络(RegGAN)和非刚性配准技术,将第一次扫描的衰减校正CT(ACCT)图像转换为第二次扫描的伪ACCT图像,用于第二次示踪剂PET图像的衰减和散射校正(ASC) | 研究为回顾性研究,样本量相对较小,且仅验证了三种示踪剂组合 | 减少双示踪剂全身PET/CT成像中的CT辐射剂量 | 247名接受双示踪剂全身PET/CT成像的患者 | 医学影像处理 | NA | 深度学习,非刚性配准 | RegGAN | CT和PET图像 | 247名患者,包括167名接受[68Ga]Ga-DOTATATE/[18F]FDG,50名接受[68Ga]Ga-PSMA-11/[18F]FDG,30名接受[68Ga]Ga-FAPI-04/[18F]FDG |
8356 | 2025-02-12 |
Diffusion-driven multi-modality medical image fusion
2025-Feb-11, Medical & biological engineering & computing
IF:2.6Q3
DOI:10.1007/s11517-025-03300-6
PMID:39932643
|
研究论文 | 本文提出了一种基于扩散驱动的多模态医学图像融合方法,旨在解决现有深度学习方法在图像细节和颜色信息融合不足的问题 | 提出了一种利用潜在空间中多模态图像信息分布关系的扩散驱动方法,并设计了局部和全局网络(LAGN)以更好地保留不同模态的互补信息 | NA | 提高多模态医学图像融合的质量,以提供更全面的临床诊断信息 | MRI/CT、MRI/PET和MRI/SPECT图像 | 计算机视觉 | NA | 扩散驱动方法 | 局部和全局网络(LAGN) | 医学图像 | 三个数据集(MRI/CT、MRI/PET和MRI/SPECT图像),16名医生和医学生参与评估 |
8357 | 2025-02-12 |
A deep learning-based prediction model for prognosis of cervical spine injury: a Japanese multicenter survey
2025-Feb-10, European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
IF:2.6Q1
DOI:10.1007/s00586-025-08708-0
PMID:39930051
|
研究论文 | 本研究旨在开发一种基于深度学习的预测模型,用于预测老年颈椎损伤患者的预后 | 使用深度学习模型预测老年颈椎损伤患者的预后,提供了传统统计分析方法未考虑的重要因素 | 研究仅限于日本的多中心数据,可能不适用于其他地区或人群 | 开发一种深度学习模型,用于预测老年颈椎损伤患者的预后 | 1512名65岁及以上的颈椎损伤患者 | 机器学习 | 颈椎损伤 | 深度学习 | 深度学习模型 | 临床数据 | 1512名老年患者 |
8358 | 2025-02-12 |
Recent Development, Applications, and Patents of Artificial Intelligence in Drug Design and Development
2025-Feb-10, Current drug discovery technologies
|
综述 | 本文综述了人工智能在药物设计和开发中的最新进展、应用及专利 | 本文重点介绍了人工智能和深度学习在药物设计中的创新应用,并讨论了相关专利,与已发表材料形成区分 | NA | 探讨人工智能在药物设计和开发中的应用,以提高药物发现的效率和成功率 | 药物设计和开发 | 机器学习 | NA | 深度学习(DL)、人工神经网络(ANNs) | 深度学习算法、机器学习算法 | 临床试验数据、基因组学数据、蛋白质组学数据、微阵列数据 | NA |
8359 | 2025-02-12 |
Innovative laboratory techniques shaping cancer diagnosis and treatment in developing countries
2025-Feb-08, Discover oncology
IF:2.8Q2
DOI:10.1007/s12672-025-01877-w
PMID:39921787
|
综述 | 本文探讨了实验室技术在癌症诊断和治疗中的创新应用,特别是在发展中国家的挑战和机遇 | 整合了人工智能,特别是深度学习和卷积神经网络,以提高诊断准确性和数据分析能力 | 发展中国家面临财务限制、医疗基础设施不足和先进诊断技术获取有限等挑战 | 改善癌症诊断和治疗,特别是在资源有限的环境中 | 癌症患者,特别是在发展中国家的患者 | 数字病理学 | 癌症 | 肿瘤组织学、单细胞技术、流式细胞术、分子成像、液体活检、免疫测定和分子诊断 | 深度学习、卷积神经网络 | NA | NA |
8360 | 2025-02-12 |
A multi-model feature fusion based transfer learning with heuristic search for copy-move video forgery detection
2025-Feb-08, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-88592-2
PMID:39922840
|
研究论文 | 本文提出了一种基于多模型特征融合的迁移学习方法,结合启发式搜索,用于检测视频中的复制-移动伪造 | 提出了一种新的ECMVFD-FTLTDO模型,结合了ResNet50、MobileNetV3和EfficientNetB7三种模型的特征融合迁移学习过程,并使用Tasmanian Devil Optimizer优化ERNN分类器参数 | 模型对训练数据的依赖性较高,且需要合适的超参数范围 | 检测和分类视频内容中的复制-移动伪造 | 视频内容 | 计算机视觉 | NA | 迁移学习 | ResNet50, MobileNetV3, EfficientNetB7, ERNN | 视频 | GRIP和VTD数据集 |