本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 8361 | 2025-10-06 |
Artificial intelligence in electroencephalography analysis for epilepsy diagnosis and management
2025, Frontiers in neurology
IF:2.7Q3
DOI:10.3389/fneur.2025.1615120
PMID:40901672
|
综述 | 系统评估人工智能在脑电图分析中用于癫痫诊断和管理的最新进展 | 重点分析支持性AI和预测性AI两种主要应用模式,强调多模态数据融合和个性化诊断能力 | 模型可解释性有限、数据质量限制、临床转化障碍 | 评估人工智能在癫痫脑电图分析中的应用价值和发展方向 | 癫痫患者的脑电图数据 | 医疗人工智能 | 癫痫 | 脑电图(EEG) | 深度学习(DL), 机器学习(ML) | 脑电图信号 | NA | NA | NA | NA | NA |
| 8362 | 2025-10-06 |
Uncovering key biomarkers, potential therapeutic targets and development of deep learning model in heart failure
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0330780
PMID:40901835
|
研究论文 | 通过生物信息学分析和深度学习技术识别心力衰竭关键生物标志物并开发诊断模型 | 首次结合WGCNA、机器学习方法和深度学习CNN模型识别出四个心力衰竭关键基因并发现两个潜在治疗药物 | 研究基于公共数据库数据,需要进一步实验验证 | 探索心力衰竭的分子机制并开发诊断模型 | 心力衰竭相关基因表达数据 | 生物信息学 | 心血管疾病 | 基因表达分析,单细胞RNA测序,分子对接 | CNN | 基因表达数据 | GEO数据库中心力衰竭相关样本 | NA | 卷积神经网络 | 诊断性能 | NA |
| 8363 | 2025-10-06 |
Artificial intelligence in advanced gastric cancer: a comprehensive review of applications in precision oncology
2025, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2025.1630628
PMID:40904504
|
综述 | 本文全面综述了人工智能在晚期胃癌精准肿瘤学中的应用现状与前景 | 系统整合了多模态AI方法在晚期胃癌诊疗中的应用,强调多源数据融合对预测性能的提升 | 存在数据质量与标准化不足、模型泛化性与可解释性有限、缺乏严谨前瞻性验证等问题 | 探讨人工智能在晚期胃癌精准肿瘤学中的应用潜力与发展方向 | 晚期胃癌患者的多维数据(临床记录、基因组学、影像组学、病理组学) | 精准医疗 | 胃癌 | 机器学习、深度学习 | NA | 临床记录、基因组数据、医学影像、数字病理 | NA | NA | NA | NA | NA |
| 8364 | 2025-10-06 |
A new deep learning model for predicting IMRT dose distributions for lung cancer with dose masks
2025, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2025.1587788
PMID:40904510
|
研究论文 | 提出一种结合剂量掩模的深度学习模型,用于提高肺癌IMRT剂量分布的预测精度 | 首次在肺癌IMRT剂量预测中引入剂量掩模信息,显著提升了中低剂量区域的预测准确性 | 研究仅针对肺癌IMRT治疗,未验证在其他癌症类型或放疗技术中的适用性 | 开发更精确的肺癌IMRT剂量分布预测方法 | 肺癌患者的放疗剂量分布 | 数字病理 | 肺癌 | IMRT(调强放疗) | CNN | CT图像, 解剖结构, 剂量掩模 | 包含常规放疗和同步整合推量放疗的混合数据集 | NA | 3D U-Net | MAE(平均绝对误差) | NA |
| 8365 | 2025-10-06 |
Improving EEG classification of alcoholic and control subjects using DWT-CNN-BiGRU with various noise filtering techniques
2025, Frontiers in neuroinformatics
IF:2.5Q3
DOI:10.3389/fninf.2025.1618050
PMID:40904893
|
研究论文 | 本研究提出了一种结合离散小波变换、CNN和双向GRU的混合模型,用于提高酒精依赖者和正常对照组的EEG信号分类性能 | 首次将DWT-CNN-BiGRU混合架构应用于EEG酒精依赖分类,并系统比较了三种信号去噪技术的效果 | 未明确说明样本来源和数据集规模,可能影响结果的泛化能力 | 开发更可靠的EEG信号分类方法以辅助酒精依赖诊断 | 酒精依赖患者和正常对照组的脑电图信号 | 生物医学信号处理 | 酒精依赖症 | EEG信号分析, 离散小波变换, 离散傅里叶变换, 离散余弦变换 | CNN, BiGRU | EEG信号 | NA | NA | DWT-CNN-BiGRU, DWT-CNN-BiLSTM | 准确率, 精确率, 召回率, F1分数 | NA |
| 8366 | 2025-10-06 |
MultiSC: a deep learning pipeline for analyzing multiomics single-cell data
2024-Sep-23, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae492
PMID:39376034
|
研究论文 | 提出一种名为MultiSC的深度学习流程,用于分析多组学单细胞数据 | 开发了结合多模态约束自编码器和矩阵分解模型的新型分析流程,能够有效整合三种组学数据 | NA | 解决多组学单细胞数据整合分析的挑战 | 单细胞多组学数据(基因表达、染色质可及性、转录因子蛋白表达) | 生物信息学 | NA | NEAT-seq单细胞多组学测序技术 | 自编码器, 矩阵分解, 多元线性回归 | 多组学单细胞数据 | NA | NA | 单细胞层次约束自编码器, scMF | NA | NA |
| 8367 | 2025-10-06 |
DeScoD-ECG: Deep Score-Based Diffusion Model for ECG Baseline Wander and Noise Removal
2024-09, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2023.3237712
PMID:37021916
|
研究论文 | 提出一种基于条件扩散模型的ECG基线漂移和噪声去除方法DeScoD-ECG | 首次将条件扩散生成模型应用于ECG噪声去除,采用多轮平均策略提高信号重建质量 | NA | 开发ECG信号基线漂移和噪声去除技术以提高心血管疾病诊断准确性 | 心电图信号 | 生物医学信号处理 | 心血管疾病 | 扩散模型 | 深度生成模型 | ECG信号 | QT数据库和MIT-BIH噪声压力测试数据库 | NA | 基于分数的扩散模型 | 距离相似性指标 | NA |
| 8368 | 2025-10-06 |
Learnable PM diffusion coefficients and reformative coordinate attention network for low dose CT denoising
2023-Dec-11, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/aced33
PMID:37536336
|
研究论文 | 提出一种基于可学习PM扩散系数和改良坐标注意力网络的低剂量CT去噪方法 | 将Perona-Malik模型的各向异性图像处理思想融入神经网络,提出新颖的边缘特征提取方法 | NA | 解决低剂量CT去噪中噪声/伪影抑制与边缘/结构保持的平衡问题 | 低剂量CT图像 | 计算机视觉 | NA | CT成像 | CNN | 医学图像 | 模拟和真实数据集 | NA | 编码器-解码器结构 | 定量和定性评估 | NA |
| 8369 | 2025-10-06 |
Volumetric feature points integration with bio-structure-informed guidance for deformable multi-modal CT image registration
2023-Dec-08, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad03d2
PMID:37844603
|
研究论文 | 提出一种结合体积特征点和生物结构引导的可变形多模态CT图像配准方法 | 首次将体素特征点与生物结构特征点相结合指导医学图像配准网络训练 | 仅验证于CT-CBCT配对数据集,未涉及其他模态医学图像 | 提升医学图像配准精度,特别是低对比度器官的配准效果 | CT和CBCT医学图像 | 医学图像处理 | NA | 深度学习 | 深度学习网络 | 医学图像 | NA | NA | NA | 精度 | NA |
| 8370 | 2025-10-06 |
Deep learning-based multi-stage postoperative type-b aortic dissection segmentation using global-local fusion learning
2023-Nov-29, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/acfec7
PMID:37774717
|
研究论文 | 提出基于深度学习的多阶段术后B型主动脉夹层分割框架,采用全局-局部融合学习机制 | 设计两阶段分割流程和全局-局部融合学习机制,通过补偿裁剪图像缺失的上下文特征提升分割性能 | NA | 开发术后B型主动脉夹层的快速准确分割技术,支持患者特异性3D形态学和血流动力学分析 | B型主动脉夹层患者术后影像数据 | 医学图像分析 | 心血管疾病 | 计算机断层扫描血管成像 | 深度学习 | 医学影像 | 133名患者的306张随访图像,多中心数据集 | NA | NA | Dice相似系数 | NA |
| 8371 | 2025-10-06 |
Radiation-induced acoustic signal denoising using a supervised deep learning framework for imaging and therapy monitoring
2023-Nov-29, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad0283
PMID:37820684
|
研究论文 | 本研究开发了一种通用深度初始卷积神经网络(GDI-CNN)用于辐射诱导声学信号去噪,显著减少成像所需的帧平均数量 | 提出了一种在每个初始块中使用多膨胀卷积的神经网络架构,能够编码和解码具有不同时间特征的信号,可泛化用于不同辐射源的声学信号去噪 | NA | 开发深度学习框架用于辐射诱导声学信号去噪,以降低成像剂量并提高时间分辨率 | X射线诱导声学信号、质子声学信号和电声学信号 | 医学影像处理 | NA | 辐射诱导声学成像 | CNN | 声学信号 | NA | NA | GDI-CNN, 深度初始卷积神经网络 | 均方误差, 峰值信噪比, 结构相似性 | NA |
| 8372 | 2025-10-06 |
Deep learning-based workflow for hip joint morphometric parameter measurement from CT images
2023-Nov-06, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad04aa
PMID:37852280
|
研究论文 | 提出基于深度学习的CT图像髋关节形态参数自动测量工作流 | 首次开发从粗到精的深度学习模型实现髋关节几何重建,并建立稳健的形态参数测量方法 | 仅在两个不同成像协议的数据集上验证,样本多样性可能有限 | 提高髋关节置换术前规划的准确性和鲁棒性 | 髋关节CT图像 | 计算机视觉 | 骨科疾病 | CT成像 | 深度学习模型 | CT图像 | 两个不同成像协议的数据集 | NA | 从粗到精深度学习模型 | Dice系数, 标志点预测误差, Pearson相关系数, 组内相关系数 | NA |
| 8373 | 2025-10-06 |
Generalisation of radiotherapy dose calculation for Monte Carlo algorithm combined with 3D Swin-Unet: a multi-institutional IMRT evaluation
2023-Oct-31, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad02d8
PMID:37827160
|
研究论文 | 提出基于深度学习的放射治疗剂量计算框架T-MC net,并在多机构IMRT计划中进行泛化性能评估 | 首次将3D Swin-Unet与蒙特卡洛算法结合,构建可泛化至多机构的深度学习剂量计算框架 | 研究样本量相对有限(60个IMRT计划),未涵盖所有人体区域 | 评估深度学习剂量计算方法在临床实践中的泛化能力 | 调强放射治疗(IMRT)计划 | 医学影像分析 | 肿瘤放射治疗 | 蒙特卡洛算法,深度学习 | 3D Swin-Unet | 放射治疗剂量分布数据 | 来自4个机构的60个IMRT计划,涵盖头颈、胸腹和盆腔区域 | NA | 3D Swin-Unet | 伽马通过率(GPR),一致性百分比(PA),剂量差异比(DDR),剂量体积直方图(DVH) | NA |
| 8374 | 2025-10-06 |
Coarse-to-fine prior-guided attention network for multi-structure segmentation on dental panoramic radiographs
2023-Oct-26, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad0218
PMID:37816372
|
研究论文 | 提出一种基于深度学习的牙科全景片多结构自动分割方法 | 采用两阶段粗到细的先验引导分割框架,包含边缘融合模块、空间注意力模块和混合注意力模块 | NA | 实现牙科全景片中多种解剖结构的精确自动分割 | 上颌窦、下颌髁突、下颌神经、牙槽骨和牙齿 | 计算机视觉 | 牙科疾病 | 牙科全景放射成像 | CNN | 图像 | 150张牙科全景片 | NA | 编码器-解码器架构 | Jaccard系数 | NA |
| 8375 | 2025-10-06 |
Automatic ultrasound diagnosis of thyroid nodules: a combination of deep learning and KWAK TI-RADS
2023-Oct-16, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/acfdf0
PMID:37757848
|
研究论文 | 结合深度学习和KWAK TI-RADS实现甲状腺结节超声自动诊断 | 首次将改进的U-Net++分割模型与基于KWAK TI-RADS指南的多任务卷积神经网络相结合,实现甲状腺结节风险等级自动评估 | 研究仅基于1862例样本,需要更大规模数据验证 | 实现甲状腺结节风险等级的自动评估,为细针穿刺必要性判断提供依据 | 甲状腺结节患者 | 计算机视觉 | 甲状腺结节 | 超声检查 | CNN | 超声图像 | 1862例甲状腺结节病例(训练集),302例测试集 | NA | U-Net++, MT-CNN | Dice系数, IoU, 准确率, 假阳性率, 精确率, 召回率 | NA |
| 8376 | 2025-10-06 |
Sub-second whole brain T2mapping via multiband SENSE multiple overlapping-echo detachment imaging and deep learning
2023-Oct-05, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/acfb71
PMID:37726009
|
研究论文 | 本研究通过结合多波段SENSE技术和深度学习,实现了亚秒级全脑T2定量成像 | 首次将多波段SENSE技术与MOLED成像结合,实现了600毫秒内完成全脑T2定量成像 | 在高多波段因子条件下图像质量可能下降,需要PnP算法进行改善 | 加速定量磁共振成像,实现亚秒级全脑T2定量成像 | 数值模拟、水模实验和人脑实验 | 医学影像分析 | NA | 定量磁共振成像、多波段SENSE、MOLED成像 | 深度学习 | 磁共振图像 | 数值模拟、水模实验和人脑实验(具体样本数量未明确说明) | NA | U-Net, DRUNet | 图像质量、信噪比 | NA |
| 8377 | 2025-10-06 |
Automatic brain extraction for rat magnetic resonance imaging data using U2-Net
2023-Oct-02, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/acf641
PMID:37659398
|
研究论文 | 本研究开发了一种基于U-Net深度学习模型的大鼠脑部MRI图像颅骨剥离新方法 | 首次将U-Net神经网络应用于大鼠脑部MRI图像的自动颅骨剥离,相比传统方法RATS和BrainSuite表现更优 | 研究仅针对大鼠脑部MRI数据,未验证在其他物种或成像模式上的适用性 | 开发一种高效准确的大鼠脑部MRI图像颅骨剥离方法 | 599只大鼠的脑部磁共振成像数据 | 医学影像分析 | 神经系统疾病 | 磁共振成像 | U-Net | 医学影像 | 599只大鼠(476只训练,123只测试) | NA | U-Net | Dice系数,Jaccard系数,敏感性,特异性,像素精度,Hausdorff系数,真阳性率,假阳性率 | NA |
| 8378 | 2025-10-06 |
MARGANVAC: metal artifact reduction method based on generative adversarial network with variable constraints
2023-10-02, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/acf8ac
PMID:37696272
|
研究论文 | 提出一种基于变约束生成对抗网络的金属伪影减少方法MARGANVAC,用于改善CT成像中的金属伪影问题 | 引入变约束机制作为时变成本函数,在训练初期放松保真度约束并逐步加强,同时开发了金属伪影迁移方法生成具有真实伪影特征的配对训练数据 | 未明确说明模型在更广泛临床场景中的泛化能力及计算效率的具体评估 | 开发适用于实际临床场景的高性能金属伪影减少方法 | CT图像中的金属伪影 | 医学影像处理 | NA | CT成像 | GAN | CT图像 | NA | NA | 生成对抗网络 | 定量指标,定性评估 | NA |
| 8379 | 2025-10-06 |
Deep learning for fast denoising filtering in ultrasound localization microscopy
2023-10-02, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/acf98f
PMID:37703894
|
研究论文 | 本研究提出基于对比半监督网络的深度学习去噪方法,用于超声定位显微镜中的快速去噪滤波 | 首次将对比半监督网络(CS-Net)应用于超声定位显微镜去噪,显著缩短数据处理时间 | 神经网络主要使用模拟微泡数据进行训练,可能对真实数据的适应性存在局限 | 开发快速去噪方法以实现超声定位显微镜的实时成像 | 微泡信号、流场体模、新西兰兔肿瘤模型 | 医学影像处理 | 肿瘤 | 超声定位显微镜(ULM)、超分辨率超声成像(SR-US) | 深度学习 | 超声图像 | 流场体模实验和动物实验(新西兰兔肿瘤模型) | NA | 对比半监督网络(CS-Net) | 信噪比(SNR)、对比噪声比(CNR)、处理速度 | NA |
| 8380 | 2025-10-06 |
QS-ADN: quasi-supervised artifact disentanglement network for low-dose CT image denoising by local similarity among unpaired data
2023-Oct-02, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/acf9da
PMID:37708896
|
研究论文 | 提出一种准监督伪影解缠网络,利用未配对数据中的局部相似性进行低剂量CT图像去噪 | 提出准监督学习模式,通过从未配对正常剂量CT数据集中寻找最佳匹配图像作为先验信息 | 伪影减少效果仍不如完全监督学习方法 | 低剂量CT图像去噪以减少辐射风险 | 低剂量CT图像和正常剂量CT图像 | 计算机视觉 | NA | CT成像 | CNN | 医学图像 | 未配对LDCT和NDCT图像数据集 | PyTorch | ADN(伪影解缠网络) | 噪声抑制,上下文保真度 | NA |