深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24567 篇文献,本页显示第 821 - 840 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
821 2025-05-10
Automated Cone Beam Computed Tomography Segmentation of Multiple Impacted Teeth With or Without Association to Rare Diseases: Evaluation of Four Deep Learning-Based Methods
2025-Jun, Orthodontics & craniofacial research IF:2.4Q2
research paper 评估四种基于深度学习的自动牙齿分割方法在锥形束计算机断层扫描(CBCT)图像中的准确性 比较了三种商业化和一种开源的深度学习解决方案在牙齿分割中的表现,特别是在多颗阻生牙患者中的应用 研究样本量较小(20例CBCT扫描),且未来深度学习解决方案的性能无法基于当前结果预测 评估深度学习解决方案在自动牙齿分割中的准确性 多颗阻生牙患者的CBCT图像 digital pathology dental disease CBCT DL (deep learning) image 20例CBCT扫描(来自多颗阻生牙患者)
822 2025-05-10
Deep Learning-Based Three-Dimensional Analysis Reveals Distinct Patterns of Condylar Remodelling After Orthognathic Surgery in Skeletal Class III Patients
2025-Jun, Orthodontics & craniofacial research IF:2.4Q2
研究论文 本研究利用深度学习技术对骨骼III类错颌畸形患者进行下颌髁突形态变化的自动化三维分析 采用深度学习算法自动化CBCT图像的方向调整、配准、骨分割和标志点识别,并通过体素叠加和形状对应分析髁突重塑模式 样本量较小(17例患者),且为回顾性研究 评估骨骼III类错颌畸形患者双颌正颌手术后下颌髁突的形态变化 17例骨骼III类错颌畸形患者(平均年龄24.8±3.5岁) 数字病理 骨骼III类错颌畸形 CBCT扫描、深度学习算法 深度学习算法 三维医学影像 17例患者的术前和术后12-18个月CBCT扫描数据
823 2025-05-10
A breakthrough computational strategy for efficient enzymatic digestion of walnut protein to prepare antioxidant peptides
2025-Jun-01, Food chemistry IF:8.5Q1
research paper 提出一种结合深度学习模型与虚拟消化的高效计算策略CAE-VD,用于制备具有特定活性的核桃蛋白抗氧化肽 首次将高精度深度学习模型(卷积自编码器,CAE)与虚拟消化(VD)相结合,指导酶的选择以高效制备天然生物活性肽(NBAPs) 研究仅针对核桃蛋白,未验证其他蛋白来源的适用性 开发高效计算策略以优化天然生物活性肽的酶法制备过程 核桃蛋白及其酶解产物 机器学习 NA 虚拟消化(VD)与深度学习建模 卷积自编码器(CAE) 肽序列数据与活性数据 未明确样本量(涉及核桃蛋白、碱性蛋白酶、胃蛋白酶和胰蛋白酶)
824 2025-05-10
Specific glycomacropeptide detection via polyacrylamide gel electrophoresis with dual imaging and signal-fusion deep learning
2025-Jun-01, Food chemistry IF:8.5Q1
研究论文 本文报告了一种结合双成像和信号融合深度学习的SDS-PAGE方法,用于牛奶样品中糖巨肽的特异性检测与分析 采用双成像(固有荧光成像和银染)生成互补检测信号,结合信号融合深度学习模型提高定量分析性能 NA 开发一种特异性、灵敏且简单的方法,用于检测和分析牛奶中的糖巨肽 牛奶样品中的糖巨肽(GMP) 机器视觉 NA SDS-PAGE、固有荧光成像(IFI)、银染 信号融合深度学习模型 图像 NA
825 2025-05-10
A Tc1- and Th1-T-lymphocyte-rich tumor microenvironment is a hallmark of MSI colorectal cancer
2025-Jun, The Journal of pathology IF:5.6Q1
research paper 该研究通过分析MSI和MSS结直肠癌患者的肿瘤微环境,揭示了T细胞亚群的组成和功能差异 首次详细描述了MSI结直肠癌中Tc1和Th1 T细胞的富集及其与免疫检查点治疗反应的关系 样本量相对有限,且仅针对结直肠癌,未涉及其他癌症类型 探究MSI和MSS结直肠癌患者肿瘤微环境中T细胞亚群的组成和功能差异 79例MSI和1,045例MSS结直肠癌患者 digital pathology colorectal cancer multiplex-fluorescence immunohistochemistry CNN image 79 MSI和1,045 MSS结直肠癌样本
826 2025-05-10
Prediction methodology of air absorbed dose rates for Chinese cities with deep learning models
2025-Jun, Journal of environmental radioactivity IF:1.9Q3
research paper 本研究提出了一种基于历史数据的城市空气吸收剂量率预测框架,并比较了三种深度学习模型在预测性能上的差异 结合CNN进行数据预处理,显著提高了处理效率,并比较了LSTM、CNN-LSTM和Bi-LSTM三种模型在预测空气吸收剂量率上的性能 研究仅针对中国部分城市,未涵盖所有地区,且Bi-LSTM模型在内陆城市的MAE值略高于LSTM模型 开发有效的城市空气吸收剂量率预测方法,以支持环境辐射防护策略的制定 中国多个城市的空气吸收剂量率监测数据 machine learning NA Lagrange插值法、深度学习模型 LSTM、CNN-LSTM、Bi-LSTM、CNN 监测数据 中国多个城市的空气吸收剂量率报告数据
827 2025-05-10
Canine EEG helps human: cross-species and cross-modality epileptic seizure detection via multi-space alignment
2025-Jun, National science review IF:16.3Q1
研究论文 提出一种基于跨物种和跨模态脑电图数据的多空间对齐方法,以提高癫痫发作的检测能力和理解 首次展示整合不同物种和模态的异质数据以提高基于EEG的癫痫发作检测性能的有效性 是一项初步研究,仅提供了多物种和多模态数据整合的挑战和潜力的见解 提高癫痫发作的检测能力和理解 人类和犬类的脑电图数据 机器学习 癫痫 脑电图(EEG) 深度学习,包括领域适应和知识蒸馏 EEG信号 多个人类和犬类的表面和颅内EEG数据集
828 2025-05-10
Zero-Shot Artifact2Artifact: Self-incentive artifact removal for photoacoustic imaging
2025-Jun, Photoacoustics IF:7.1Q1
研究论文 提出了一种零样本自监督伪影去除方法ZS-A2A,用于提高三维光声成像的质量 利用超轻量网络和随机丢弃传感器数据的方法,无需训练数据或先验知识即可实现伪影去除 未提及在复杂临床环境中的验证结果 提高三维光声成像的质量 光声成像中的伪影 数字病理 NA 光声成像 超轻量网络 图像 模拟研究和动物实验
829 2025-05-10
An Optimized Framework of QSM Mask Generation Using Deep Learning: QSMmask-Net
2025-Jun, NMR in biomedicine IF:2.7Q1
research paper 提出了一种基于深度学习的QSM掩模生成优化框架QSMmask-Net,用于精确生成定量磁化率成像(QSM)所需的掩模 QSMmask-Net通过深度神经网络实现了精确的QSM掩模生成,其性能优于其他掩模生成方法,且与人工掩模(金标准)的差异最小 未提及具体局限性 优化QSM掩模生成方法,提高定量磁化率成像的准确性和效率 定量磁化率成像(QSM)中的掩模生成 digital pathology NA deep learning deep neural network image 模拟数据和健康对照组
830 2025-05-10
Deep learning enabled open-set bacteria recognition using surface-enhanced Raman spectroscopy
2025-May-15, Biosensors & bioelectronics IF:10.7Q1
研究论文 提出了一种基于transformer的神经网络,用于利用表面增强拉曼光谱(SERS)进行开放集细菌识别 结合分类和重建任务,通过分析重建误差拒绝未知细菌种类,提高了开放集识别的准确性 未提及具体样本数量和细菌种类范围 改进现有封闭集细菌识别方法的局限性,提高实际应用中的鲁棒性 细菌种类识别 机器学习 NA 表面增强拉曼光谱(SERS) transformer 光谱数据 NA
831 2025-05-10
Thermo-responsive and phase-separated hydrogels for cardiac arrhythmia diagnosis with deep learning algorithms
2025-May-15, Biosensors & bioelectronics IF:10.7Q1
研究论文 开发了一种基于水凝胶的皮肤界面电极,用于心脏心律失常的诊断,并通过深度学习算法实现高精度识别 通过温度介导的可切换氢键相互作用,实现了水凝胶电极的可编程粘附与剥离,显著提高了粘附能量的开关比 未提及长期使用的生物相容性或耐久性测试结果 开发一种可编程粘附的水凝胶电极,用于心脏心律失常的实时监测与诊断 心脏心律失常患者 数字病理学 心血管疾病 深度学习算法 NA 电信号(ECG) 八种常见心律失常患者
832 2025-05-10
Molecular surfaces modeling: Advancements in deep learning for molecular interactions and predictions
2025-05-12, Biochemical and biophysical research communications IF:2.5Q3
review 本文综述了分子表面分析领域的最新进展及其与AI技术的结合 整合AI技术与分子表面分析,揭示隐藏的模式、关系和设计原则 NA 加速分子发现和创新,推动药物开发、材料工程和催化等领域的进步 分子表面分析及其在预测建模和分子设计中的应用 machine learning NA AI-driven approaches NA molecular surface representations NA
833 2025-05-10
Predicting the Brain-To-Plasma Unbound Partition Coefficient of Compounds via Formula-Guided Network
2025-May-09, Journal of chemical information and modeling IF:5.6Q1
研究论文 本文通过建立公式引导的深度学习模型CMD-FGKpuu,预测化合物的脑-血浆未结合分配系数,以评估血脑屏障通透性 开发了公式引导的深度学习模型CMD-FGKpuu,并在多个基准测试中表现良好,展示了深度学习在预测脑-血浆未结合分配系数方面的潜力 现有经验评分模型的通用性和适用性尚未充分探索,且数据稀缺,多为内部数据 预测化合物的脑-血浆未结合分配系数,以评估血脑屏障通透性,为药物开发提供有效工具 化合物的脑-血浆未结合分配系数 机器学习 NA 深度学习 CMD-FGKpuu 实验数据 通过数据挖掘建立的公共大鼠数据集
834 2025-05-10
Toward Accurate PAH IR Spectra Prediction: Handling Charge Effects with Classical and Deep Learning Models
2025-May-08, Journal of chemical information and modeling IF:5.6Q1
研究论文 本研究利用机器学习和图神经网络预测多环芳烃(PAHs)的红外光谱,特别关注中性和电离分子的光谱预测 首次实现了对带电PAHs红外光谱的快速准确预测,并引入了XGBoost和图神经网络(GNN)两种模型 异原子PAHs的数据稀缺性是一个主要挑战 开发能够同时预测中性和电离PAHs红外光谱的机器学习模型 多环芳烃(PAHs)的中性和电离分子 机器学习 NA 机器学习,图神经网络 XGBoost, GNN 分子图表示,Morgan指纹 未明确提及具体样本数量
835 2025-05-10
Artificial intelligence applied to ultrasound diagnosis of pelvic gynecological tumors: a systematic review and meta-analysis
2025-May-08, Gynecologic and obstetric investigation IF:2.0Q2
meta-analysis 本文通过系统回顾和荟萃分析评估了人工智能在超声诊断盆腔妇科肿瘤中的应用效果 首次对AI在盆腔妇科肿瘤超声诊断中的研究进行了系统性回顾和荟萃分析,并与ADNEX模型进行了性能比较 大多数研究存在方法学缺陷,导致高偏倚风险,且仅少数研究包含外部验证和校准评估 评估人工智能在盆腔妇科肿瘤超声诊断中的识别和区分能力 盆腔妇科肿瘤(卵巢、子宫内膜和子宫肌层病变) digital pathology gynecological tumors ultrasound imaging deep learning, radiomics-based machine learning image 44项研究(40项卵巢肿瘤,3项子宫内膜肿瘤,1项子宫肌层病变)
836 2025-05-10
Patient-specific uncertainty calibration of deep learning-based autosegmentation networks for adaptive MRI-guided lung radiotherapy
2025-May-08, Physics in medicine and biology IF:3.3Q1
research paper 该研究提出了一种针对自适应MRI引导的肺癌放疗中深度学习自动分割网络的病人特异性不确定性校准方法 提出了一种病人特异性训练后不确定性校准方法,显著提高了深度学习自动分割模型的不确定性校准精度 研究样本量相对有限(122例肺癌患者),且GTV分割性能仍有提升空间 提高自适应放疗中深度学习自动分割模型的不确定性校准精度 肺癌患者 digital pathology lung cancer Monte Carlo Dropout (MCD) 3D-U-Net MRI图像 122例肺癌患者(80/19/23训练/验证/测试)
837 2025-05-10
Deep learning-assisted analysis of single-particle tracking for automated correlation between diffusion and function
2025-May-08, Nature methods IF:36.1Q1
研究论文 介绍了一种名为DeepSPT的深度学习框架,用于快速高效地分析细胞内物体的扩散行为 开发了DeepSPT框架,能够自动从分子和细胞器的扩散中提取功能信息,显著提高了分析效率 未提及具体的技术局限性或数据限制 旨在通过深度学习技术自动分析细胞内物体的扩散行为,以提取功能信息 细胞内分子和细胞器的扩散行为 计算机视觉 NA 光学显微镜追踪技术 深度学习框架 时间序列数据 未提及具体样本数量
838 2025-05-10
Exploiting network optimization stability for enhanced PET image denoising using deep image prior
2025-May-08, Physics in medicine and biology IF:3.3Q1
研究论文 提出一种利用网络优化稳定性增强PET图像去噪的方法,应用于条件深度图像先验(DIP) 引入优化过程中的稳定性信息,通过稳定性图识别网络优化轨迹中的不稳定区域,结合DIP输出和原始PET图像进行加权去噪 仅在高分辨率脑PET数据集上进行了验证,未涉及其他类型PET数据 提高PET图像去噪的可靠性和定量准确性 PET图像 医学图像处理 NA 深度图像先验(DIP) DIP 医学图像(PET) 8个高分辨率脑PET数据集
839 2025-05-10
SimSon: Simple Contrastive Learning of SMILES for Molecular Property Prediction
2025-May-08, Bioinformatics (Oxford, England)
research paper 提出了一种名为SimSon的自监督学习框架,用于通过对比学习获取SMILES表示,以提升分子性质预测的性能 利用对比学习和随机化SMILES增强模型的泛化能力和鲁棒性,有效捕捉分子层面的全局语义上下文 未明确提及具体的数据短缺问题如何影响模型性能,以及在大规模化学空间中的泛化能力是否完全解决 提升分子性质预测的准确性和泛化能力,加速药物发现和逆合成 SMILES表示的分子数据 cheminformatics NA 对比学习 SimSon SMILES数据 未明确提及具体样本数量
840 2025-05-10
A multi-model deep learning approach for the identification of coronary artery calcifications within 2D coronary angiography images
2025-May-08, International journal of computer assisted radiology and surgery IF:2.3Q2
研究论文 本文提出了一种基于多模型深度学习的冠状动脉钙化识别方法,旨在通过2D冠状动脉造影图像辅助临床医生识别冠状动脉钙化 首次提出了一种结合ResNet-18分类主干和U-Net解码器架构的临床决策支持系统,用于在2D冠状动脉造影图像中识别冠状动脉钙化 样本量较小(14名患者的44幅图像采集),且未来可通过探索多辅助任务的并发使用来进一步提高分割性能 提高冠状动脉钙化(CAC)在2D冠状动脉造影图像中的识别准确性和效率 2D冠状动脉造影图像中的冠状动脉钙化 数字病理学 心血管疾病 深度学习 ResNet-18, U-Net 图像 14名患者的44幅图像采集
回到顶部