深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 32372 篇文献,本页显示第 8381 - 8400 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
8381 2025-06-14
Combining Biology-based and MRI Data-driven Modeling to Predict Response to Neoadjuvant Chemotherapy in Patients with Triple-Negative Breast Cancer
2025-01, Radiology. Artificial intelligence
research paper 结合基于生物学的模型和MRI数据驱动的深度学习来预测三阴性乳腺癌患者对新辅助化疗的反应 整合了基于生物学的数学模型和卷积神经网络(CNN)来预测肿瘤对新辅助化疗的时空演变 研究为回顾性研究,样本量相对较小(118名患者) 预测三阴性乳腺癌患者对新辅助化疗的反应 局部晚期三阴性乳腺癌患者 digital pathology breast cancer MRI, deep learning CNN image 118名女性患者(中位年龄51岁,范围29-78岁) NA NA NA NA
8382 2025-06-14
SCIseg: Automatic Segmentation of Intramedullary Lesions in Spinal Cord Injury on T2-weighted MRI Scans
2025-01, Radiology. Artificial intelligence
研究论文 开发了一种名为SCIseg的深度学习工具,用于在T2加权MRI扫描上自动分割脊髓和脊髓损伤中的髓内病变 SCIseg是一个开源工具,通过主动学习的三阶段过程训练,能够自动分割髓内SCI病变和脊髓,并在多样化的数据集上表现出色 研究未提及模型在不同扫描参数或病变类型间的泛化能力 开发自动分割脊髓损伤中髓内病变的深度学习工具 脊髓损伤患者的T2加权MRI扫描 数字病理 脊髓损伤 T2加权MRI扫描 CNN 图像 191名脊髓损伤患者 NA NA NA NA
8383 2025-06-14
Deep Learning Applied to Diffusion-weighted Imaging for Differentiating Malignant from Benign Breast Tumors without Lesion Segmentation
2025-01, Radiology. Artificial intelligence
研究论文 评估和比较不同人工智能模型在扩散加权成像(DWI)中区分良性和恶性乳腺肿瘤的性能,并与放射科医生的评估进行比较 应用深度学习模型(特别是小型2D CNN)在无需病灶分割的情况下,利用DWI数据区分乳腺肿瘤的良恶性,且性能与放射科医生相当 研究为回顾性设计,样本量相对较小(334个乳腺病灶),且所有患者均为女性 评估AI模型在乳腺肿瘤良恶性鉴别中的性能 乳腺肿瘤患者 计算机视觉 乳腺癌 扩散加权成像(DWI) 2D CNN, ResNet-18, EfficientNet-B0, 3D CNN 医学影像 293名女性患者的334个乳腺病灶 NA NA NA NA
8384 2025-06-14
Innovative data techniques for centrifugal pump optimization with machine learning and AI model
2025, PloS one IF:2.9Q1
research paper 本文探讨了利用机器学习和AI模型优化离心泵的数据技术 采用Dewesoft FFT DAQ系统和传感器融合技术提取高质量数据,结合EDA、数据可视化和特征工程提升数据可解释性,并通过假设测试验证数据完整性 未提及具体模型在极端条件下的表现或泛化能力 提高离心泵的运营效率并减少模型训练时间 离心泵机器(CPM) machine learning NA Exploratory Data Analysis (EDA), Data Visualization, Feature Engineering (FE) machine learning classifiers, deep learning algorithms sensor data NA NA NA NA NA
8385 2025-06-14
A User-Friendly Machine Learning Pipeline for Automated Leaf Segmentation in Atriplex lentiformis
2025, Bioinformatics and biology insights IF:2.3Q3
研究论文 本文介绍了一种用于植物表型分析的端到端深度学习管道,专注于自动化叶片分割 结合了微调的Mask R-CNN模型与自然语言提示技术,并集成了QR码自动识别功能,开发了用户友好的Streamlit网络应用 训练数据集较小(仅176张植物图像) 开发一个准确、可扩展且用户友好的自动化叶片分割管道 Atriplex lentiformis植物的叶片 计算机视觉 NA 深度学习 Mask R-CNN, Segment Anything Model (SAM), Grounded SAM 图像 176张植物图像 NA NA NA NA
8386 2025-06-14
An integrated approach for mental health assessment using emotion analysis and scales
2025 Jan-Dec, Healthcare technology letters IF:2.8Q3
research paper 该研究提出了一种结合情绪分析和量表的综合方法进行心理健康评估,特别是针对抑郁症的初步评估 整合了四种模块(面部情绪识别、量表问卷、语音情绪识别和医生聊天)进行抑郁症评估,提高了预测的准确性 情绪识别的准确性仍有提升空间,且用户可能需要与真实医生交流以消除疑虑 开发一种综合方法,通过情绪分析和量表评估抑郁症 抑郁症患者或潜在患者 machine learning mental illness Facial Emotion Recognition (FER), Speech Emotion Recognition (SER), 量表问卷 深度学习模型(未明确具体类型) image, audio, text 使用了FER2013数据集以及RAVDESS、TESS、SAVEE和CREMA-D数据集 NA NA NA NA
8387 2025-06-14
Integration of T cell repertoire, CyTOF, genotyping and symptomatology data reveals subphenotypic variability in COVID-19 patients
2025, Computational and structural biotechnology journal IF:4.4Q2
研究论文 该研究通过整合T细胞受体库、CyTOF、基因分型和症状学数据,揭示了COVID-19患者的亚表型变异性 使用LCM-BIC算法整合多种免疫表型和遗传数据,识别出三个新的患者聚类,并通过深度学习分析TCR氨基酸序列,发现与疾病严重程度相关的SARS-CoV-2特异性TCR序列 样本量较小(61名患者),且仅来自西班牙人群,可能限制结果的普适性 通过整合多种数据识别COVID-19患者的免疫和遗传特征,以帮助分层和管理患者 61名西班牙COVID-19患者(33名轻度,28名重度) 免疫学 COVID-19 CyTOF, TCRseq, SNP分析, 深度学习 LCM-BIC算法, 深度学习模型 免疫表型数据, 基因分型数据, 症状学数据 61名COVID-19患者(33名轻度,28名重度) NA NA NA NA
8388 2025-06-14
Prediction of CRISPR-Cas9 on-target activity based on a hybrid neural network
2025, Computational and structural biotechnology journal IF:4.4Q2
研究论文 提出了一种基于混合神经网络CRISPR_HNN的CRISPR-Cas9靶向活性预测方法 整合了MSC、MHSA和BiGRU模块,有效捕捉局部动态特征和全局长距离依赖关系,并采用One-hot Encoding和Label Encoding策略 未提及具体的数据集局限性或模型泛化能力测试 提高sgRNA活性的预测准确性,以增强CRISPR-Cas9基因编辑技术的安全性和有效性 CRISPR-Cas9系统中的sgRNA活性 机器学习 NA CRISPR-Cas9基因编辑技术 混合深度神经网络(整合MSC、MHSA和BiGRU) 基因序列数据 未明确提及具体样本量,仅说明在公共数据集上测试 NA NA NA NA
8389 2025-06-14
Deep Learning Prostate MRI Segmentation Accuracy and Robustness: A Systematic Review
2024-07, Radiology. Artificial intelligence
系统性综述 本研究通过系统性综述探讨了深度学习在前列腺MRI分割中的准确性和鲁棒性,并与专业放射科医生进行了比较 首次系统性评估深度学习在前列腺MRI分割中的表现,并比较不同MRI厂商、前列腺区域和测试方法下的性能 仅纳入截至2022年7月31日前的英文文献,可能遗漏最新研究成果 评估深度学习在前列腺MRI分割中的准确性和鲁棒性 前列腺MRI图像 数字病理学 前列腺癌 MRI 深度学习算法 医学影像 48项研究(来自691篇初步筛选文献) NA NA NA NA
8390 2025-06-14
Validation of de novo designed water-soluble and transmembrane β-barrels by in silico folding and melting
2024-Jul, Protein science : a publication of the Protein Society IF:4.5Q1
研究论文 通过计算机模拟折叠和熔解验证了从头设计的水溶性和跨膜β桶蛋白 揭示了AlphaFold2和ESMFold在不同任务中的优势,并引入了一种基于预测增量扰动的'计算机模拟熔解'新方法 缺乏高质量预测模型与实验成功机会之间关系的正式证据 验证和比较深度学习结构预测算法在蛋白质设计中的应用 从头设计的水溶性和跨膜β桶蛋白 计算生物学 NA 深度学习结构预测算法(AlphaFold2, ESMFold) AlphaFold2, ESMFold 蛋白质序列和结构数据 NA NA NA NA NA
8391 2025-06-14
A Semiautonomous Deep Learning System to Reduce False Positives in Screening Mammography
2024-05, Radiology. Artificial intelligence
research paper 评估半自主人工智能模型在筛查乳腺X光片中识别非乳腺癌可疑病例并减少假阳性检查的能力 开发了一种半自主深度学习系统,显著减少乳腺癌筛查中的假阳性率和不必要的医疗程序 研究基于回顾性数据,需要在更多前瞻性研究中验证其效果 降低乳腺癌筛查中的假阳性率和相关医疗负担 乳腺X光筛查图像 digital pathology breast cancer deep learning AI image 123,248张训练用乳腺X光片(含6,161例癌症)和14,831例筛查检查(含1,026例癌症)的回顾性研究 NA NA NA NA
8392 2025-06-14
SCIseg: Automatic Segmentation of T2-weighted Intramedullary Lesions in Spinal Cord Injury
2024-Apr-21, medRxiv : the preprint server for health sciences
研究论文 开发了一种名为SCIseg的深度学习工具,用于自动分割脊髓损伤中的T2加权髓内病变 SCIseg模型通过三阶段训练过程,包括主动学习,能够自动分割脊髓和髓内病变,且在不同病因、扫描仪制造商和图像分辨率下表现良好 研究为回顾性研究,可能存在选择偏差 开发自动分割脊髓损伤中T2加权髓内病变的深度学习工具 脊髓损伤患者的T2加权MRI图像 数字病理学 脊髓损伤 深度学习 SCIseg(基于深度学习的模型) MRI图像 191名脊髓损伤患者(平均年龄48.1岁±17.9,142名男性) NA NA NA NA
8393 2025-06-14
Multicenter Evaluation of a Weakly Supervised Deep Learning Model for Lymph Node Diagnosis in Rectal Cancer at MRI
2024-03, Radiology. Artificial intelligence
research paper 开发了一个弱监督深度学习模型WISDOM,用于直肠癌患者术前MRI数据的淋巴结诊断 提出了一个弱监督模型开发框架WISDOM,结合术后病理信息进行淋巴结诊断,显著提升了放射科医生的诊断性能 研究为回顾性设计,可能存在选择偏差 开发并验证一个基于MRI的淋巴结诊断模型,辅助直肠癌患者的临床诊断 直肠癌患者的MRI数据和术后病理信息 digital pathology rectal cancer MRI (T2-weighted and diffusion-weighted imaging) weakly supervised deep learning model image 1014名患者(训练队列589人,内部测试队列146人,外部测试队列279人) NA NA NA NA
8394 2025-06-14
Prior Clinico-Radiological Features Informed Multi-Modal MR Images Convolution Neural Network: A novel deep learning framework for prediction of lymphovascular invasion in breast cancer
2024-02, Cancer medicine IF:2.9Q2
research paper 本研究开发了一种名为PCMM-Net的深度学习框架,用于提高乳腺癌淋巴血管侵犯(LVI)预测的准确性 PCMM-Net整合了多参数MRI和先前的临床知识,以提高LVI评估的精确度 当前基于术前MRI的放射组学方法在评估早期乳腺癌患者的LVI时缺乏精确性 开发一个深度学习框架以提高乳腺癌LVI预测的准确性 341名乳腺癌患者 digital pathology breast cancer MRI CNN image 341名患者 NA NA NA NA
8395 2025-06-14
Deep learning-based virtual H& E staining from label-free autofluorescence lifetime images
2024, Npj imaging
research paper 提出了一种基于深度学习的虚拟H&E染色方法,从无标记的自发荧光寿命图像中生成临床级虚拟H&E染色图像 结合先进的深度学习模型和当代图像质量度量,利用荧光寿命信息(而不仅仅是强度)实现更准确的虚拟染色重建 未提及具体样本量的限制或模型在更广泛组织类型上的泛化能力 解决FLIM图像快速精确解释的难题,实现无标记组织样本的即时准确细胞级分析 肿瘤微环境中常见的七种不同细胞类型 digital pathology multiple cancer types fluorescence lifetime imaging microscopy (FLIM) DL (unspecified architecture) autofluorescence lifetime images NA (未明确提及具体样本数量) NA NA NA NA
8396 2025-06-14
Expert-centered Evaluation of Deep Learning Algorithms for Brain Tumor Segmentation
2024-01, Radiology. Artificial intelligence
研究论文 本文通过文献调查和专家评估,探讨了深度学习算法在脑肿瘤分割中的评估实践及专家对分割质量的感知 揭示了专家对脑肿瘤分割质量感知的低一致性,并指出现有定量指标与临床感知之间的低相关性 专家评估样本量较小(60例),且专家间评分一致性较低(Krippendorff α=0.34) 评估深度学习算法在脑肿瘤分割中的性能及专家对分割质量的感知差异 脑肿瘤分割算法及医学专家对分割质量的评价 数字病理 脑肿瘤 深度学习算法 NA 医学影像 60例脑肿瘤分割案例(由医学专家评估),180篇文献调查 NA NA NA NA
8397 2025-06-14
A Deep Learning Pipeline for Assessing Ventricular Volumes from a Cardiac MRI Registry of Patients with Single Ventricle Physiology
2024-01, Radiology. Artificial intelligence
research paper 开发了一个端到端的深度学习管道,用于自动分割来自多中心Fontan循环患者的心脏MRI数据 提出了一个包含三个深度学习模型的管道,用于识别短轴电影堆栈、图像裁剪和分割,实现了对单心室生理患者心脏MRI数据的快速标准化分割 在475例未见过的检查中,有26%需要轻微调整,5%需要重大调整,0.4%的裁剪模型失败 开发一个自动化深度学习管道,用于评估单心室生理患者的心脏MRI心室容积 来自13个机构的250例心脏MRI检查 digital pathology cardiovascular disease cardiac MRI U-Net 3+ image 250例心脏MRI检查(训练、验证和测试),并在475例未见过的检查中进一步评估 NA NA NA NA
8398 2025-06-14
Revisiting the Trustworthiness of Saliency Methods in Radiology AI
2024-01, Radiology. Artificial intelligence
research paper 评估放射学AI中显著性方法的可信度,特别是其对输入微小扰动的敏感性和鲁棒性 提出预测-显著性相关性(PSC)系数作为评估显著性方法敏感性和鲁棒性的新指标 研究仅基于胸部X光片和脑部MR图像数据集,可能无法推广到其他医学影像领域 验证医学AI解释方法的可信度 胸部X光片和脑部MR图像 digital pathology lung cancer deep learning CNN image 191229张胸部X光片和7022张脑部MR图像 NA NA NA NA
8399 2025-06-14
Deep Learning-based Identification of Brain MRI Sequences Using a Model Trained on Large Multicentric Study Cohorts
2024-01, Radiology. Artificial intelligence
research paper 开发了一种基于深度学习的全自动设备无关和序列无关的卷积神经网络(CNN),用于可靠且高通量地标记异质、非结构化的MRI数据 使用大规模多中心研究队列训练的模型,能够可靠地区分九种MRI序列类型,且在存在或不存在肿瘤的情况下均保持高准确率 NA 开发一个可靠且高通量的MRI序列自动标记系统 多中心脑MRI数据 computer vision glioblastoma MRI CNN, ResNet-18 image 2179名胶质母细胞瘤患者,8544次检查,63327个序列,来自249家医院和29种扫描仪类型 NA NA NA NA
8400 2025-06-14
Examination-Level Supervision for Deep Learning-based Intracranial Hemorrhage Detection on Head CT Scans
2024-01, Radiology. Artificial intelligence
research paper 比较弱监督(仅检查级别标签)和强监督(图像级别标签)在训练深度学习模型检测头CT扫描中的颅内出血(ICH)方面的效果 研究表明弱监督模型在特定条件下性能优于强监督模型,且能显著减少放射科医生的工作量 研究仅基于回顾性数据集,未在临床前瞻性环境中验证 评估不同监督级别对深度学习模型检测颅内出血性能的影响 头CT扫描中的颅内出血检测 digital pathology intracranial hemorrhage CT扫描 attention-based CNN image 21,736次检查(内部数据集)和511次检查(外部数据集) NA NA NA NA
回到顶部